www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Orthogonale Ebenen
Orthogonale Ebenen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Ebenen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:05 Do 13.01.2011
Autor: AsianMaths

Aufgabe
Gegeben ist die quadratische Pyramide A(6/0/0) ;B(6/6/0); C(0/6/0); D (0/0/0) und S(3/3/6)
Eine Ebene E geht durch die Mittelpunkte der Kanten SB und SC und ist orthogonal zur Seitenfläche BCS. Bestimmen Sie eine Gleichung für E.

Erstmal habe ich die Ebenengleichung von SCB erstellt:
[mm] \pmat{ 3 \\ 3 \\ 0} [/mm] + s* [mm] \pmat{ 0 \\ 2 \\1 } [/mm]
(Jeweils SB und SC berechnet, dann mit beiden Normalenvektoren ein LGS aufgestellt um nur einen Normalenvektor zu haben,ist das richtig so?)

Jetzt will ich die Gerade durch die beiden Mittelpunkte darstellen..aber was müsste ich dann machen?
Ich hätte ja lediglich nur die Ebene und eine Gerade, die in der Ebene liegt.
ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hoffe ihr könnt mir helfen! Danke im voraus :)


        
Bezug
Orthogonale Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Do 13.01.2011
Autor: MathePower

Hallo AsianMaths,


[willkommenmr]


> Gegeben ist die quadratische Pyramide A(6/0/0) ;B(6/6/0);
> C(0/6/0); D (0/0/0) und S(3/3/6)
>  Eine Ebene E geht durch die Mittelpunkte der Kanten SB und
> SC und ist orthogonal zur Seitenfläche BCS. Bestimmen Sie
> eine Gleichung für E.
>  Erstmal habe ich die Ebenengleichung von SCB erstellt:
>  [mm]\pmat{ 3 \\ 3 \\ 0}[/mm] + s* [mm]\pmat{ 0 \\ 2 \\1 }[/mm]


Das ist keine Ebenengleichung.

Eine Ebene im [mm]\IR^{3}[/mm] hat 2 Richtungvektoren.

Siehe dazu: Ebene


> (Jeweils SB und SC berechnet, dann mit beiden
> Normalenvektoren ein LGS aufgestellt um nur einen
> Normalenvektor zu haben,ist das richtig so?)
>  
> Jetzt will ich die Gerade durch die beiden Mittelpunkte
> darstellen..aber was müsste ich dann machen?
> Ich hätte ja lediglich nur die Ebene und eine Gerade, die
> in der Ebene liegt.
>  ch habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hoffe ihr könnt mir helfen! Danke im voraus :)
>  


Gruss
MathePower

Bezug
        
Bezug
Orthogonale Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Do 13.01.2011
Autor: AsianMaths

Und wie berechne ich dann die Aufgabe? wenn ich die Ebenengleichungen und die Geradengleichung habe?

Bezug
                
Bezug
Orthogonale Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Do 13.01.2011
Autor: angela.h.b.


> Und wie berechne ich dann die Aufgabe? wenn ich die
> Ebenengleichungen und die Geradengleichung habe?

Hallo,

mit dem Normalenvektor der Ebene und dem Richtungsvektor der Geraden kennst Du zwei Richtungsvektoren der fraglichen Ebene.
Da Du auch einen Punkt kennst, durch den die Ebene verlaufen soll, steht dem Aufstellen der Ebenengleichung nichts mehr entgegegen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de