www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Orthogonale Matrix
Orthogonale Matrix < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Matrix: Wählen Sie alpha, sodass...
Status: (Frage) beantwortet Status 
Datum: 13:29 Di 19.01.2016
Autor: LPark

Aufgabe
Bestimmen Sie Werte für alpha so, dass A eine orthogonale Matrix ist.


[mm] A=\pmat{ \alpha & (1/2) \\ -(1/2) & \alpha } [/mm]

Für eine orthogonale Matrizen muss doch gelten:

Z1S1*Z1S2 + Z2S1*Z2S2 = 0 (Z = Zeile und S = Spalte)

Aber wie ich dann auf das [mm] \alpha [/mm] komme, weiß ich leider nicht..



        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Di 19.01.2016
Autor: fred97


> Bestimmen Sie Werte für alpha so, dass A eine orthogonale
> Matrix ist.
>  [mm]A=\pmat{ \alpha & (1/2) \\ -(1/2) & \alpha }[/mm]
>  
> Für eine orthogonale Matrizen muss doch gelten:
>  
> Z1*Z2 + S1*s2 = 0 (Z = Zeile und S = Spalte)
>  
> Aber wie ich dann auf das [mm]\alpha[/mm] komme, weiß ich leider

Du hast noch eine Bedingung vergessen: die Zeilenvektoren müssen die Länge 1 haben.

FRED

> nicht..
>  
>  


Bezug
                
Bezug
Orthogonale Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Di 19.01.2016
Autor: LPark

Also wenn ich:

[mm] |\vektor{\alpha \\ \bruch{1}{2}}| [/mm] = [mm] \wurzel{\alpha^2+\bruch{1}{4}} [/mm] = 1

=> [mm] \alpha^2 [/mm] + [mm] \bruch{1}{4} [/mm] = 1
   [mm] \alpha [/mm] = [mm] \wurzel{-\bruch{3}{4}} [/mm]

Und was bringt mir das?

Bezug
                        
Bezug
Orthogonale Matrix: Okay
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 Di 19.01.2016
Autor: LPark

Okay, ich habs mal mit + [mm] \bruch{1}{2} [/mm] durchgerechnet.
So komme ich auf das Ergebnis.
Danke. ^^

Bezug
                                
Bezug
Orthogonale Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Di 19.01.2016
Autor: angela.h.b.


> Okay, ich habs mal mit + [mm]\bruch{1}{2}[/mm] durchgerechnet.
>  So komme ich auf das Ergebnis.

???

Ich verstehe nicht, was Du meinst...

LG Angela

>  Danke. ^^


Bezug
                        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Di 19.01.2016
Autor: angela.h.b.


> Also wenn ich:
>  
> [mm]|\vektor{\alpha \\ \bruch{1}{2}}|[/mm] =
> [mm]\wurzel{\alpha^2+\bruch{1}{4}}[/mm] = 1
>  
> => [mm]\alpha^2[/mm] + [mm]\bruch{1}{4}[/mm] = 1
>     [mm]\alpha[/mm] = [mm]\wurzel{-\bruch{3}{4}}[/mm]
>  
> Und was bringt mir das?

Hallo,

da man, wenn man in den reellen Zahlen rechnet, aus negativen Zahlen nicht die Wurzel ziehen kann, würde Dir dieses Ergebnis sagen:
es gibt kein [mm] \alpha [/mm] mit der gesuchten Eigenschaft.

Allerdings ist bei mir [mm] 1-\bruch{1}{4}=\red{+}\bruch{3}{4}, [/mm]
womit die Chancen, eine orthogonale Matrix zu finden, immens wachsen...

LG Angela


Bezug
                                
Bezug
Orthogonale Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Di 19.01.2016
Autor: fred97


> > Also wenn ich:
>  >  
> > [mm]|\vektor{\alpha \\ \bruch{1}{2}}|[/mm] =
> > [mm]\wurzel{\alpha^2+\bruch{1}{4}}[/mm] = 1
>  >  
> > => [mm]\alpha^2[/mm] + [mm]\bruch{1}{4}[/mm] = 1
>  >     [mm]\alpha[/mm] = [mm]\wurzel{-\bruch{3}{4}}[/mm]
>  >  
> > Und was bringt mir das?
>
> Hallo,
>  
> da man, wenn man in den reellen Zahlen rechnet, aus
> negativen Zahlen nicht die Wurzel ziehen kann, würde Dir
> dieses Ergebnis sagen:
>  es gibt kein [mm]\alpha[/mm] mit der gesuchten Eigenschaft.
>  
> Allerdings ist bei mir [mm]1-\bruch{1}{4}=\red{+}\bruch{3}{4},[/mm]
>  womit die Chancen, eine orthogonale Matrix zu finden,
> immens wachsen...

   sogar aufs Doppelte ....

FRED

>  
> LG Angela
>  


Bezug
                        
Bezug
Orthogonale Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 19.01.2016
Autor: Thomas_Aut

Hallo,

Eine weiter Möglichkeit, dass rasch auszurechnen ist :


Ist A eine orthogonale Matrix so ist $|det(A)|=1$

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de