www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Orthogonale Projektion
Orthogonale Projektion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonale Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 01.07.2008
Autor: kiri111

Aufgabe
Sei [mm] V=\IC^{3} [/mm] der unitäre Standardvektorraum der Dimension 3 und sei U:={x [mm] \in [/mm] V: x+i*y-i*z=0}. Bestimme die Matrix der orthogonalen Projektion p von V auf U.

Erstmal meine Frage: Ist U zwei-dimensional?
Ich bin so vorgegangen: Ich habe mir eine Orthonormalbasis von U gesucht. Ich bin davon ausgegangen, dass dieser zwei-dimensional ist, also habe ich mir zwei Vektoren gesucht, die normiert sind, orthogonal auf einander stehen und in U liegen. Dann habe ich die Formel [mm] p(v)=\summe_{i=1}^{2}*u_i, [/mm] wobei [mm] u_i [/mm] die Basisvektoren aus U sind und v der Vektor [mm] v=(x,y,z)^{T}. [/mm]

Muss ich eine 3x3 Matrix erhalten oder eine 2x2-Matrix?

Ich hoffe, ihr könnt meinen Ausführungen folgen, sonst kann ich auch noch gerne mehr Rechenergebnisse schreiben. :)

Viele Grüße
kiri

        
Bezug
Orthogonale Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 01.07.2008
Autor: felixf

Hallo kiri

> Sei [mm]V=\IC^{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

der unitäre Standardvektorraum der Dimension

> 3 und sei U:={x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

V: x+i*y-i*z=0}. Bestimme die Matrix

> der orthogonalen Projektion p von V auf U.

Gemeint ist wohl die Matrix bzgl. der kanonischen Basis? Eure Aufgabenstellungen sind ja echt ziemlich Lueckenhaft :)

>  Erstmal meine Frage: Ist U zwei-dimensional?

Ja.

>  Ich bin so vorgegangen: Ich habe mir eine Orthonormalbasis
> von U gesucht. Ich bin davon ausgegangen, dass dieser
> zwei-dimensional ist, also habe ich mir zwei Vektoren
> gesucht, die normiert sind, orthogonal auf einander stehen
> und in U liegen.

Gut soweit.

> Dann habe ich die Formel
> [mm]p(v)=\summe_{i=1}^{2}*u_i,[/mm] wobei [mm]u_i[/mm] die
> Basisvektoren aus U sind und v der Vektor [mm]v=(x,y,z)^{T}.[/mm]

Ebenfalls gut.

> Muss ich eine 3x3 Matrix erhalten oder eine 2x2-Matrix?

Eine $3 [mm] \times [/mm] 3$, da die Abbildung von [mm] $\IC^3$ [/mm] nach [mm] $\IC^3$ [/mm] geht.

Du bildest die kanonischen Einheitsvektoren ab und schreibst ihre Bilder in die Matrix; das sind drei Vektoren mit je drei Eintraegen.

LG Felix


Bezug
                
Bezug
Orthogonale Projektion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Mi 02.07.2008
Autor: kiri111

Hi Felix,
ich dank dir vielmals. Ich hatte einen kleinen Rechenfehler. Jetzt bekomme ich eine 3x3 Matrix. :-)

Viele Grüße
kiri

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de