www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthogonalität
Orthogonalität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität: wie soll ich da anfangen?
Status: (Frage) beantwortet Status 
Datum: 11:46 Di 01.05.2007
Autor: LittleStudi

Aufgabe
Es sei V ein endlich-dimensionaler euklisischer Raum.

a) Es sei M [mm] \subseteq [/mm] V ein Untervektorraum. Beweisen Sie, dass gilt:
[mm] M^{\perp\perp}=M [/mm]

b) Es sei A [mm] \subseteq [/mm] V. Beweisen Sie, dass gilt:
[mm] A^{\perp\perp}= [/mm] L(A)

Dabei Sei [mm] A^{\perp\perp}=(A^{\perp})^{\perp} [/mm]

Also die a) ist instinktiv klar denn wenn etwas zweimal orthogonal ist dann kommt wieder das ürsprüngliche heraus ... ist ja wie eine verschiebung um 180° oder?
Aber wie beweise ich das?

und bei der b) weiß ich auch noch nicht wie ich zu einem Ansatz komme?

Liebe Grüße ... :)

        
Bezug
Orthogonalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Di 01.05.2007
Autor: LittleStudi

kann man die a) vielleicht über die Definiton des Skalarproduktes beweisen?

bei der b) habe ich immernoch keine Ahnung :(

.. bitte um Hilfe

Bezug
                
Bezug
Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Di 01.05.2007
Autor: Manabago

Hi! Zeige bei a) einfach, dass der eine VR im anderen enthalten ist und dann, dass die Dimensionen gleich sind.

zu b): Was bedeutet L(A)?

Lg

Bezug
                        
Bezug
Orthogonalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 01.05.2007
Autor: LittleStudi

Ja aber das ist doch schon in der Vorraussetzung angegeben, dass M [mm] \subseteq [/mm] V. Dass muss ich doch dann nicht mehr zeigen oder?

L(A) bedeutet lineare Hülle von A

Bezug
                                
Bezug
Orthogonalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Di 01.05.2007
Autor: LittleStudi

Oder gibt es vielleicht einen Satz mithilfe man dies leichter zeigen kann?

Bezug
                                        
Bezug
Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Di 01.05.2007
Autor: leduart

Hallo studi
V habe dim n, M dim [mm] m\len [/mm]
waehle eine Orthogonalbasis von M v1 bis vm, ergaenze sie zu einer Ortogonalbasis von V durch [mm] v_{m+1}..v_n [/mm]
dann ist [mm] v_{m+1} [/mm] Basis von [mm] M^t [/mm] und damit ist [mm] v_1 [/mm] bis [mm] v_m [/mm] basis von [mm] M^{tt} [/mm]
bei A nimmst du die Maximalmenge lin unabh, vektoren, und verfaehrst entsprechend.
gruss leduart

Bezug
                                                
Bezug
Orthogonalität: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Di 01.05.2007
Autor: LittleStudi

Ich danke dir vielmals ... :)

Lg :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de