www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Orthogonalität/Abstand/uvm.
Orthogonalität/Abstand/uvm. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität/Abstand/uvm.: Aufgabe: Flugbahnen
Status: (Frage) beantwortet Status 
Datum: 17:39 Mo 05.03.2007
Autor: Hanz

Aufgabe
a) Gegeben sind die Punkte A(1/-1/0); B(1/4/1); C(2/0/-1) sowie die Gerade [mm] g:\vec{x}=\vektor{3\\ 6\\-1} [/mm] + [mm] s\vektor{6\\ -1\\-5} [/mm] mit s [mm] \in [/mm] R

Weisen Sie nach, dass die drei Punkte A,B und C nicht auf einer Geraden liegen.

b) Die Ebene E enthält drei Punkte A,B und C. ermitteln Sie eine Gleichung von E.

c) zeigen Sie, dass die Gerade g orthogonal zur Ebene E ist.

d)Berechnen Sie den Abstand des Punktes A von g.

Also gerechnet habe ich alle Teilaufgaben, meine Frage ist jetzt halt, ob meine Überlegungen und rechnungen stimmen/sinn ergeben.

a) Hier habe ich mir überlegt, die drei Punkte auf linerare Abhängigkeit zu überprüfen, indem ich die Vektoren [mm] \overrightarrow{AB} [/mm] und [mm] \overrightarrow{AC} [/mm] aufstelle.
[mm] \overrightarrow{AB}=\vektor{0 \\ 5\\1} [/mm]
[mm] \overrightarrow{AC}=\vektor{1 \\ 1\\-1} [/mm]

[mm] \vmat{ 0=& \lambda \\ 5= & \lambda} [/mm]
[mm] \Rightarrow [/mm] es gibt für [mm] \lambda [/mm] keine Lsg, also linear unabhängig und die Punkte liegen nicht auf einer Geraden.


b) E: [mm] \vec{x}=\vektor{1 \\ -1\\0}+\lambda\vektor{0 \\ 5\\1}+\mu\vektor{1 \\ 1\\-1} [/mm] mit [mm] \mu,\lambda \in [/mm] R

c) Eine Gerade heisst ja Orthogonale auf einer Ebene, wenn ihr Richtungsvektor ein Normalenvektor der Ebene ist.

Daher forme ich E in Normalenform um:
[mm] \vec{n}=\vektor{0 \\ 5\\1} \times \vektor{1 \\ 1\\-1} [/mm] = [mm] \vektor{6 \\ -1\\5} [/mm]
[mm] E:[\vec{x}-\vektor{1 \\ -1\\0}] \vektor{6 \\ -1\\5}=0 [/mm]
Da der Normalenvektor mit dem Richtungsvektor von g übereinstimmt, sind E und g orthogonal.

d) E in Koordinatenform umwandeln:
E: 6x-y+5z=7
Jetzt g in E einsetzten: 6(3+6s)-(6-s)+5(-1+5s)=7
<=> 18+36s-6+s-5+25s=7
<=> 7+62s=7
=> s = 0

Nun s in g einsetzten, um einen Punkt F zu bestimmen:
[mm] g:\vec{x}=\vektor{3\\ 6\\-1} [/mm] + [mm] 0\vektor{6\\ -1\\-5} [/mm]
=> F(3/6/-1)

[mm] d(A,g)=\wurzel{(3-1)²+(6+1)²+(-1-0)²}=\wurzel{54} [/mm]


So das wären meine Lösungen, weiss aber nicht ob sie so korrekt sind.
Mfg, A.

        
Bezug
Orthogonalität/Abstand/uvm.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mo 05.03.2007
Autor: homme

Grundsätzliche Vorgehensweise ist richtig und Rechenfehler habe ich im Moment auch keine Entdeckt. Müsste passen

Bezug
        
Bezug
Orthogonalität/Abstand/uvm.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Di 06.03.2007
Autor: informix

Hallo Hanz,

> a) Gegeben sind die Punkte A(1/-1/0); B(1/4/1); C(2/0/-1)
> sowie die Gerade [mm]g:\vec{x}=\vektor{3\\ 6\\-1}[/mm] +
> [mm]s\vektor{6\\ -1\\-5}[/mm] mit s [mm]\in[/mm] R
>  
> Weisen Sie nach, dass die drei Punkte A,B und C nicht auf
> einer Geraden liegen.
>  
> b) Die Ebene E enthält drei Punkte A,B und C. ermitteln Sie
> eine Gleichung von E.
>  
> c) zeigen Sie, dass die Gerade g orthogonal zur Ebene E
> ist.
>  
> d)Berechnen Sie den Abstand des Punktes A von g.
>  Also gerechnet habe ich alle Teilaufgaben, meine Frage ist
> jetzt halt, ob meine Überlegungen und rechnungen
> stimmen/sinn ergeben.
>  
> a) Hier habe ich mir überlegt, die drei Punkte auf linerare
> Abhängigkeit zu überprüfen, indem ich die Vektoren
> [mm]\overrightarrow{AB}[/mm] und [mm]\overrightarrow{AC}[/mm] aufstelle.
>  [mm]\overrightarrow{AB}=\vektor{0 \\ 5\\1}[/mm]
>  
> [mm]\overrightarrow{AC}=\vektor{1 \\ 1\\-1}[/mm]
>  
> [mm]\vmat{ 0=& \lambda \\ 5= & \lambda}[/mm]
>  [mm]\Rightarrow[/mm] es gibt
> für [mm]\lambda[/mm] keine Lsg, also linear unabhängig und die
> Punkte liegen nicht auf einer Geraden.
>  
>
> b) E: [mm]\vec{x}=\vektor{1 \\ -1\\0}+\lambda\vektor{0 \\ 5\\1}+\mu\vektor{1 \\ 1\\-1}[/mm]
> mit [mm]\mu,\lambda \in[/mm] R
>  
> c) Eine Gerade heisst ja Orthogonale auf einer Ebene, wenn
> ihr Richtungsvektor ein Normalenvektor der Ebene ist.
>  
> Daher forme ich E in Normalenform um:
>  [mm]\vec{n}=\vektor{0 \\ 5\\1} \times \vektor{1 \\ 1\\-1}[/mm] =
> [mm]\vektor{6 \\ -1\\5}[/mm]
>  [mm]E:[\vec{x}-\vektor{1 \\ -1\\0}] \vektor{6 \\ -1\\5}=0[/mm]
>  
> Da der Normalenvektor mit dem Richtungsvektor von g
> übereinstimmt, sind E und g orthogonal.
>  
> d) E in Koordinatenform umwandeln:
>  E: 6x-y+5z=7
>  Jetzt g in E einsetzten: 6(3+6s)-(6-s)+5(-1+5s)=7
>  <=> 18+36s-6+s-5+25s=7

>  <=> 7+62s=7

>  => s = 0

>  
> Nun s in g einsetzten, um einen Punkt F zu bestimmen:
>  [mm]g:\vec{x}=\vektor{3\\ 6\\-1}[/mm] + [mm]0\vektor{6\\ -1\\-5}[/mm]
>  =>

> F(3/6/-1)
>  
> [mm]d(A,g)=\wurzel{(3-1)²+(6+1)²+(-1-0)²}=\wurzel{54}[/mm]
>  
>
> So das wären meine Lösungen, weiss aber nicht ob sie so
> korrekt sind.
>  Mfg, A.

Kennst du die HNF MBHesse'sche Normalenform der Ebenengleichung?
Mit ihrer Hilfe kannst du noch schneller den MBAbstand berechnen.
Probier's mal, damit kannst du deine Rechnung gleich selbst überprüfen!

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de