www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Orthogonalität vierdim. Raum
Orthogonalität vierdim. Raum < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität vierdim. Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Mo 25.11.2013
Autor: drahmas

Aufgabe
Gegeben sind die beiden Vektoren [mm] x_1:= \pmat{ 1 & 2 &-2 & -1} x_2:= \pmat{ -2 & 1 &1 & -2} [/mm]

a) Bestimmen Sie zwei weitere Vektoren [mm] x_3 [/mm] und [mm] x_4 [/mm] derart, dass [mm] x_3 [/mm] zu [mm] x_1 [/mm] und [mm] x_2 [/mm] und [mm] x_4 [/mm] zu [mm] x_1, x_2 [/mm] und [mm] x_3 [/mm] orthogonal sind.
b) Normieren Sie alle vier Vektoren, sodass diese eine orthonormierte Basis im vierdimensionalen Vektorraum darstellen.

Hallo,

wie kann ich denn im vierdimensionalen Raum orthogonale Vektoren bestimmen?
Im dreidimensionalen Raum würde ich das ja mittels des Kreuzprodukts machen, wie jedoch in diesem Zusammenhang?

In diesem Fall sollen ja die beiden Vektoren [mm] x_3 [/mm] und [mm] x_4 [/mm] gleich zu mindestens zwei Vektoren orthogonal sein. Wie mache ich das?

Besten Dank

        
Bezug
Orthogonalität vierdim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Mo 25.11.2013
Autor: abakus


> Gegeben sind die beiden Vektoren [mm]x_1:= \pmat{ 1 & 2 &-2 & -1} x_2:= \pmat{ -2 & 1 &1 & -2}[/mm]

>

> a) Bestimmen Sie zwei weitere Vektoren [mm]x_3[/mm] und [mm]x_4[/mm] derart,
> dass [mm]x_3[/mm] zu [mm]x_1[/mm] und [mm]x_2[/mm] und [mm]x_4[/mm] zu [mm]x_1, x_2[/mm] und [mm]x_3[/mm]
> orthogonal sind.
> b) Normieren Sie alle vier Vektoren, sodass diese eine
> orthonormierte Basis im vierdimensionalen Vektorraum
> darstellen.
> Hallo,

>

> wie kann ich denn im vierdimensionalen Raum orthogonale
> Vektoren bestimmen?
> Im dreidimensionalen Raum würde ich das ja mittels des
> Kreuzprodukts machen, wie jedoch in diesem Zusammenhang?

>

> In diesem Fall sollen ja die beiden Vektoren [mm]x_3[/mm] und [mm]x_4[/mm]
> gleich zu mindestens zwei Vektoren orthogonal sein. Wie
> mache ich das?

>

> Besten Dank

Hallo,
setze den dritten Vektor als [mm] \vektor{a\\ b\\c\\d}[/mm]an und bilde das Skalarprodukt mit dem ersten bzw. mit dem zweiten Vektor. Es muss jeweils 0 herauskommen.
Dann weiter mit dem vierten Vektor.
Gruß Abakus

Bezug
                
Bezug
Orthogonalität vierdim. Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Mo 25.11.2013
Autor: drahmas

Hallo,

danke für deine Antwort.
Ich habe das dann folgendermaßen angeschrieben:

[mm] \vektor{1 \\ 2 \\ -2 \\ -1}*\vektor{a \\ b \\ c \\ d}=1a+2b-2c-1d=0 [/mm]

[mm] \vektor{-2 \\ 1 \\ 1 \\ -2}*\vektor{a \\ b \\ c \\ d}=-2a+1b-1c-2d=0 [/mm]

Wie erhalte ich daraus jetzt [mm] \vec{x_3}? [/mm]

Danke und schöne Grüße

Bezug
                        
Bezug
Orthogonalität vierdim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 25.11.2013
Autor: helicopter


> Hallo,
>  
> danke für deine Antwort.
>  Ich habe das dann folgendermaßen angeschrieben:
>  
> [mm]\vektor{1 \\ 2 \\ -2 \\ -1}*\vektor{a \\ b \\ c \\ d}=1a+2b-2c-1d=0[/mm]
>  
> [mm]\vektor{-2 \\ 1 \\ 1 \\ -2}*\vektor{a \\ b \\ c \\ d}=-2a+1b-1c-2d=0[/mm]
>  
> Wie erhalte ich daraus jetzt [mm]\vec{x_3}?[/mm]
>  
> Danke und schöne Grüße


Hallo,

du musst nur das Gleichungssystem lösen, zum Beispiel mit dem Gaus Algorithmus.

Gruß helicopter

Bezug
                                
Bezug
Orthogonalität vierdim. Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 Mo 25.11.2013
Autor: drahmas

Hallo,

danke dir für die Antwort.
Wie kann ich denn zwei Gleichungen mit vier unbekannten lösen?
Brauche ich nicht insgesamt vier Gleichungen wenn ich vier unbekannte habe?

Da blicke ich jetzt leider gerade nicht ganz durch…

Besten Dank noch mal.

Bezug
                                        
Bezug
Orthogonalität vierdim. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mo 25.11.2013
Autor: Gonozal_IX

Hiho,


>  Wie kann ich denn zwei Gleichungen mit vier unbekannten lösen?

Da solltest du einige Verfahren in der Schule und der Uni kennengelernt haben.

>  Brauche ich nicht insgesamt vier Gleichungen wenn ich vier unbekannte habe?

Nur, wenn du das Gleichungssystem eindeutig lösen wollen würdest. Macht ja hier aber gar keinen Sinn.
Du erhälst dann eben 2 freie Paramter, die du frei wählen kannst, erhälst also eine Vielzahl an Vektoren. (Ist ja auch klar, wenn man sich das mal überlegt. Es gibt ja mehr als einen Vektor, der senkrecht auf den beiden gegeben steht)

Suche dir daraus einen aus.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de