www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthogonalraum
Orthogonalraum < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalraum: Tipp|Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 06.10.2014
Autor: Kletteraffe

Aufgabe
Sei $f [mm] \in [/mm] End(V)$, wobei $(V, <.>)$ ein euklidischer Raum und $B:= [mm] (v_1, \cdots, v_n)$ [/mm] eine orthonormale Basis für $V$ ist. Außerdem sei $f$ selbstadjungiert.

Ferner sei [mm] $\phi: [/mm] V [mm] \rightarrow V^{\star}$ [/mm] eine [mm] $\mathbb{R}$-lineare [/mm] Abbildung mit [mm] $\phi(v)(v') [/mm] := <v, v'>$. Dabei sei [mm] $B^{\star} [/mm] := [mm] (v^{\star}_1, \cdots, v^{\star}_n)$ [/mm] die Dualbasis zu $B$. Es gelte [mm] $\phi(v_i) [/mm] = [mm] v^{\star}_i$ [/mm] für alle $i [mm] \in \{ 1, \cdots, n \}$. [/mm]

Schließlich sei $U [mm] \subset [/mm] T$ ein Unterraum eines K-VR $T$ und [mm] $U^0 \subset T^{\star}$ [/mm] ein Unterraum mit [mm] $U^0 [/mm] := [mm] \{ (L: T \rightarrow K) \in T^{\star}: U \subset ker(L) \}$. [/mm]

Zeigen Sie, dass [mm] $\phi(ker [/mm] f) = (im [mm] f)^{0}$ [/mm] gilt.

Hallo zusammen,

ich versuche mich schon seit zwei Tagen an dieser Aufgabe und komme leider nicht auf die Lösung. Es ist eine alte Klausuraufgabe, die ich lösen (und verstehen!) möchte.

Meine Ideen soweit:

Mithilfe des Basisauswahlsatzes nehme ich mir aus der gegebenen orthonormalen Basis von V eine Basis für den Kern und das Bild von f, also (o.B.d.A.): $ker f = [mm] span(v_1, \cdots, v_r)$ [/mm] und $im f = span( [mm] f(v_{r+1}), \cdots, f(v_n))$. [/mm]

Nun ist [mm] $\phi(ker [/mm] f) = span( [mm] \phi(v_1), \cdots, \phi(v_r) [/mm] ) = span( [mm] v^{\star}_1, \cdots, v^{\star}_r [/mm] )$ nach Aufgabenstellung. Sei zunächst [mm] $\alpha [/mm] := [mm] \sum_{k=1}^{r} \lambda_k v^{\star}_k \in \phi(ker [/mm] f)$ und $x := [mm] \sum_{j=r+1}^{n} \mu_j f(v_j) \in [/mm] im f$.

Dann gilt doch, dass
[mm] $\alpha [/mm] (x) = [mm] \sum_{k=1}^{r} \lambda_k v^{\star}_k [/mm] (x) =  [mm] \sum_{k=1}^{r} \lambda_k \sum_{j=r+1}^{n} \mu_j v^{\star}_k (f(v_j))$ [/mm]
$= [mm] \sum_{k=1}^{r} \lambda_k \sum_{j=r+1}^{n} \mu_j [/mm] = [mm] \sum_{k=1}^{r} \lambda_k \sum_{j=r+1}^{n} \mu_j [/mm] $
$= [mm] \sum_{k=1}^{r} \lambda_k \sum_{j=r+1}^{n} \mu_j <0_V, v_j> [/mm] = [mm] \sum_{k=1}^{r} \lambda_k 0_K [/mm] = [mm] 0_K$. [/mm]

Und somit [mm] $\alpha(x) [/mm] = [mm] 0_K$ [/mm] für alle $x [mm] \in [/mm] im f$, also $im f [mm] \subset [/mm] ker [mm] \alpha$ [/mm] und somit [mm] $\alpha \in [/mm] (im [mm] f)^0$ [/mm] für alle [mm] $\alpha \in \phi(ker [/mm] f)$ und somit [mm] $\phi [/mm] (ker f) [mm] \subset [/mm] (im [mm] f)^0$. [/mm]

Falls das richtig sein sollte, müsste jetzt die Gegenrichtung gezeigt werden, aber da tue ich mich etwas schwer.. Könntet ihr mir erstmal sagen ob diese Richtung richtig ist bzw. wie man das am elegantesten zeigen sollte?

Vielen Dank schonmal :)

        
Bezug
Orthogonalraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 06.10.2014
Autor: andyv

Hallo,

soweit ich das überblicke ist dein Beweis der Inklusion richtig. (Allerdings geht das auch direkter.)

Für die andere Inklusion ist der Darstellungssatz von Riesz hilfreich, demnach existiert für jedes $L [mm] \in [/mm] (im [mm] f)^0$ [/mm] genau ein $w [mm] \in [/mm] V$ mit [mm] $(\Phi [/mm] w)(v')=<w|v'>=L(v') \ [mm] \forall v'\in [/mm] V$. Zeige $w [mm] \in [/mm] ker f$.

Liebe Grüße

Bezug
                
Bezug
Orthogonalraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Mo 06.10.2014
Autor: Kletteraffe

Hallo andyv,

vielen Dank für deine Antwort :)

Zwei Fragen:
1. Wie genau würde ein direkter/eleganter Beweis zur ersten Inklusion aussehen? (was müsste ich nutzen?)
2. Ich habe mir den Satz von Riesz gerade angesehen und glaube, dass der noch ein wenig über meinem Wissensstand ist.. gibt es eine Möglichkeit den zweiten Teil auf eine andere Art und Weise zu zeigen? (Die Aufgabe ist aus einer LinA2-Klausur)

Und die Aufgabe sieht nach einem Spezialfall aus, gibt es eine Verallgemeinerung, die ich in dem Zusammenhang kennenlernen sollte?

Bezug
                        
Bezug
Orthogonalraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 06.10.2014
Autor: andyv

ad 1: Man braucht die Vektoren nicht unbedingt in einer Basis darzustellen. Für [mm] $\Phi [/mm] w [mm] \in \Phi(ker [/mm] f)$ zeigt man [mm] $(\Phi [/mm] w)(v')=0 \ [mm] \forall v'\in [/mm] im f$.

ad 2: Wenn das aus einer LA2 Klausur ist, wird der Satz von Riesz in seiner einfachen Form (die Version aus der FA braucht man hier nicht) sicherlich vorhanden sein. Mit Hilfe des Satzes zeigt man auch typischerweise z.B. die Existenz der Adjungierten in LA1/2.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de