www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Orthonormalb.,quadrat ergänzen
Orthonormalb.,quadrat ergänzen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalb.,quadrat ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 06.01.2016
Autor: sissile

Aufgabe
Hallo,
In einem Beweis verstehe ich eine Zeile nicht. Im Buch steht, dass es sich um quadratische Ergänzung handelt. Jedoch komme ich nicht dahinter, wie ich das genau umwandle.

Es geht um den Satz:
Sei X ein Vektorraum. Sei [mm] \{\phi\}_{i=1}^n [/mm] eine Orthonormalbasis vom endlichdimensionalen Unterraum [mm] X_n \subset [/mm] X.
Für f [mm] \not\in X_n [/mm] ist [mm] f_n [/mm] = [mm] \sum_{i=1}^n [/mm] < [mm] \phi_i, [/mm] f> [mm] \phi_i [/mm] die Bestapproximation an f aus [mm] X_n: [/mm]
[mm] ||f-f_n|| [/mm] < ||f-g||

Der nicht verständliche Schritte:
Wir haben gezeigt ||f [mm] -\sum_{i=1}^n \tilde{\alpha_i} \phi_i||^2 [/mm] = [mm] ||f||^2 [/mm] - 2 [mm] \sum_{j=1}^n Re(\tilde{\alpha_j} \overline{\alpha_j}) [/mm] + [mm] \sum_{i=1}^n |\tilde{\alpha_i}|^2 [/mm] wobei [mm] \alpha_j= <\phi_j,f> [/mm] ist.
Wie folgt daraus:
||f [mm] -\sum_{i=1}^n \tilde{\alpha_i} \phi_i||^2 [/mm] = [mm] ||f||^2 [/mm] - [mm] \sum_{i=1}^n|\alpha_i|^2 [/mm] + [mm] \sum_{i=1}^n |\tilde{\alpha_i}- \alpha_i|^2. [/mm]



Liebe Grüße,
sissi

        
Bezug
Orthonormalb.,quadrat ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

wir zäunen das mal von hinten auf.....

[mm] $-|a_i|^2 [/mm] + [mm] |\tilde{a_i} [/mm] - [mm] a_i|^2$ [/mm]
$= [mm] -Re^2(a_i) [/mm] - [mm] Im^2(a_i) [/mm] + [mm] Re^2(\tilde{a_i} [/mm] - [mm] a_i) [/mm] + [mm] Im^2(\tilde{a_i} [/mm] - [mm] a_i)$ [/mm]
$=  [mm] -Re^2(a_i) [/mm] - [mm] Im^2(a_i) [/mm] + [mm] Re^2(\tilde{a_i}) [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] + [mm] Re^2(a_i) [/mm] + [mm] Im^2(\tilde{a_i}) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] + [mm] Im^2(a_i)$ [/mm]
$= [mm] Re^2(\tilde{a_i}) [/mm] + [mm] Im^2(\tilde{a_i}) [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] $
$= [mm] |\tilde{a_i}|^2 [/mm] - [mm] 2Re(\tilde{a_i})Re(a_i) [/mm] - [mm] 2Im(\tilde{a_i})Im(a_i) [/mm] $

Verwenden wir nun: [mm] $Re(a_i) [/mm] = [mm] Re(\overline{a_i})$ [/mm] sowie [mm] $Im(a_i) [/mm] = [mm] -Im(\overline{a_i})$, [/mm] erhalten wir erstmal:

[mm] $=|\tilde{a_i}|^2 [/mm] - [mm] 2(Re(\tilde{a_i})Re(\overline{a_i}) [/mm] - [mm] Im(\tilde{a_i})Im(\overline{a_i}))$ [/mm]

und daraus mit [mm] $Re(\tilde{a_i}\overline{a_i}) [/mm] = [mm] Re(\tilde{a_i})Re(\overline{a_i}) [/mm] - [mm] Im(\tilde{a_i})Im(\overline{a_i})$ [/mm]

[mm] $=|\tilde{a_i}|^2 [/mm]  - [mm] 2Re(\tilde{a_i}\overline{a_i}) [/mm] $

Gruß,
Gono

Bezug
                
Bezug
Orthonormalb.,quadrat ergänzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 06.01.2016
Autor: sissile

Hallo,
Danke für die Auschlüsselung und die Mühe!
Ich war aber eher daran interessiert wie man zu dem Schritt mitels quadratischer Ergänzung kommt. Falls wer in diese Richtung noch Ideen hat wäre ich dankbar!


Vielen Dank,
Sissi

Bezug
                        
Bezug
Orthonormalb.,quadrat ergänzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

wenn du das von unten nach oben liest (was im Beweis ja gemacht wird) ist das doch die quadratische Ergänzung!
Was meinst du, was beim dritten Gleichheitszeichen von oben passiert, wenn man es von unten liest und wo die quadratischen Terme herkommen?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de