www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Orthonormalbasis
Orthonormalbasis < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:42 Fr 27.08.2010
Autor: peeetaaa

Aufgabe
Es seien V:= [mm] \IR^{3x1} [/mm] versehen mit dem Standardskalarprodukt, und U:= < [mm] \vektor{1 \\ -1 \\ 0} [/mm] , [mm] \vektor{0 \\ 1 \\ -1} >_{\IR} \le [/mm] V
Man berechne Orthonormalbasen für U und für [mm] U^\perp [/mm]

Hallo zusammen,

also ich komme bei dieser Aufgabe nicht weiter.
Hab zuerst angefangen eine Orthogonalbasis für U zu berechnen, indem ich das Gram-Schmidt Verfahren angewendet habe.

[mm] u_1= v_1 [/mm] = [mm] \vektor{1 \\ -1 \\ 0} [/mm]
[mm] u_2 [/mm] = [mm] v_2 [/mm] - [mm] \bruch{ }{} *u_1 [/mm]
[mm] =\vektor{0 \\ 1 \\ -1} [/mm] + [mm] \bruch{1}{2} [/mm] * [mm] \vektor{1 \\ -1 \\ 0} [/mm]
= [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm]

und dann habe ich diese beiden Basisvektoren normiert

[mm] \vektor{1 \\ -1 \\ 0} [/mm] * [mm] \bruch{1}{ ||v_1||} [/mm] = [mm] \vektor{1 \\ -1 \\ 0} [/mm] * [mm] \bruch{1}{\wurzel{2}} [/mm]

[mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] * [mm] \bruch{1}{||v_2||} [/mm] = [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm]  * [mm] \bruch{\wurzel{6}}{3} [/mm]

ist das so schonmal richtig?
aber was mein eigentliches problem ist, ich weiß einfach nicht wie ich die Orthonormalbasis für [mm] U^\perp [/mm] herausbekomme. Ich kann mir nicht vorstellen wie der Senkrechtraum aussehen soll.
kann mir da vllt jmd helfen?

danke. gruß,
peeetaaa

        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Fr 27.08.2010
Autor: MathePower

Hallo peeetaaa,

>Aufgabe

>   Es seien V:= $ [mm] \IR^{3x1} [/mm] $ versehen mit dem Standardskalarprodukt, und U:= < $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $ , $ [mm] \vektor{0 \\ 1 \\ -1} >_{\IR} \le [/mm] $ V

>Man berechne Orthonormalbasen für U und für $ [mm] U^\perp [/mm] $

> Hallo zusammen,

> also ich komme bei dieser Aufgabe nicht weiter.
> Hab zuerst angefangen eine Orthogonalbasis für U zu berechnen, indem ich das Gram-Schmidt Verfahren angewendet habe.

> $ [mm] u_1= v_1 [/mm] $ = $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $
> $ [mm] u_2 [/mm] $ = $ [mm] v_2 [/mm] $ - $ [mm] \bruch{ }{} \cdot{}u_1 [/mm] $
> $ [mm] =\vektor{0 \\ 1 \\ -1} [/mm] $ + $ [mm] \bruch{1}{2} [/mm] $ * $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $
> = $ [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] $

> und dann habe ich diese beiden Basisvektoren normiert

> $ [mm] \vektor{1 \\ -1 \\ 0} [/mm] $ * $ [mm] \bruch{1}{ ||v_1||} [/mm] $ = $  [mm] \vektor{1 \\ -1 \\ 0} [/mm] $ * $ [mm] \bruch{1}{\wurzel{2}} [/mm] $

> $ [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] $ * $ [mm] \bruch{1}{||v_2||} [/mm] $ = $ [mm] \vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1} [/mm] $  * $ [mm] \bruch{\wurzel{6}}{3} [/mm] $

Das lässt sich noch etwas anders schreiben:

[mm]u_{2}=\bruch{1}{\wurzel{6}}*\vektor{1 \\ 1 \\ -2}[/mm]


> ist das so schonmal richtig?

Ja. [ok]


> aber was mein eigentliches problem ist, ich weiß einfach nicht wie ich die Orthonormalbasis für $ [mm] U^\perp [/mm] $ herausbekomme. Ich kann mir nicht vorstellen wie der Senkrechtraum aussehen soll.


Da 3 Vektoren des [mm]\IR^{3}[/mm] eine Basis bilden,
und 2 dieser Vektoren für U vergeben sind, bleibt für
[mm]U^{\perp}[/mm] nur noch ein Vektor uebrig.
Dieser Vektor muss auf den Vektoren von U senkrecht stehen.


> kann mir da vllt jmd helfen?

> danke. gruß,
> peeetaaa


Gruss
MathePower

Bezug
        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Fr 27.08.2010
Autor: Marcel

Hallo,

> Es seien V:= [mm]\IR^{3x1}[/mm] versehen mit dem
> Standardskalarprodukt, und U:= < [mm]\vektor{1 \\ -1 \\ 0}[/mm] ,
> [mm]\vektor{0 \\ 1 \\ -1} >_{\IR} \le[/mm] V
>  Man berechne Orthonormalbasen für U und für [mm]U^\perp[/mm]
>  Hallo zusammen,
>  
> also ich komme bei dieser Aufgabe nicht weiter.
>  Hab zuerst angefangen eine Orthogonalbasis für U zu
> berechnen, indem ich das Gram-Schmidt Verfahren angewendet
> habe.
>  
> [mm]u_1= v_1[/mm] = [mm]\vektor{1 \\ -1 \\ 0}[/mm]
>  [mm]u_2[/mm] = [mm]v_2[/mm] - [mm]\bruch{ }{} *u_1[/mm]
>  
> [mm]=\vektor{0 \\ 1 \\ -1}[/mm] + [mm]\bruch{1}{2}[/mm] * [mm]\vektor{1 \\ -1 \\ 0}[/mm]
>  
> = [mm]\vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}[/mm]
>  
> und dann habe ich diese beiden Basisvektoren normiert
>
> [mm]\vektor{1 \\ -1 \\ 0}[/mm] * [mm]\bruch{1}{ ||v_1||}[/mm] = [mm]\vektor{1 \\ -1 \\ 0}[/mm]
> * [mm]\bruch{1}{\wurzel{2}}[/mm]
>  
> [mm]\vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}[/mm] *
> [mm]\bruch{1}{||v_2||}[/mm] = [mm]\vektor{\bruch{1}{2} \\ \bruch{1}{2} \\ -1}[/mm]
>  * [mm]\bruch{\wurzel{6}}{3}[/mm]
>  
> ist das so schonmal richtig?
>  aber was mein eigentliches problem ist, ich weiß einfach
> nicht wie ich die Orthonormalbasis für [mm]U^\perp[/mm]
> herausbekomme. Ich kann mir nicht vorstellen wie der
> Senkrechtraum aussehen soll.

es gibt hier zwei Wege mit dem Hinweis von Mathepower. Der erste ist ein wenig unelegant, aber der Ansatz ist allgemein: Man benutzt, dass zwei Vektoren genau dann senkrecht zueinander stehen, wenn das Skalarprodukt zwischen den beiden Null ergibt.

Der zweite geht hier, weil [mm] $U\,$ [/mm] schon ein zweidimensionaler Unterraum des speziellen Raums [mm] $\IR^3$ [/mm] versehen mit dem Standardskalarprodukt ist. Du hast schon eine Orthonormalbasis von [mm] $U\,$ [/mm] gefunden, und diese besteht aus zwei linear unabhängigen Vektoren von [mm] $U\,.$ [/mm]
Einen Vektor, der senkrecht auf die beiden steht, erhältst Du nun mittels des []Kreuzprodukts (das ist was "spezielles", was (soweit ich gerade richtig informiert bin) man nur im [mm] $\IR^3$ [/mm] in dieser Form hat und verwenden kann).
(Sollte das Kreuzprodukt nun einen nichtnormieren Vektor ergeben, so musst Du halt noch durch die Länge des Vektors dividieren, und schon hast Du eine Orthonormalbasis (bestehend aus einem Vektor) von [mm] $U^{\perp}\,.$ [/mm] Aber wegen der geometrischen Deutung des Kreuzprodukts sollte das Kreuzprodukt doch, wenn ich das gerade richtig sehe, eh einen Vektor der Länge [mm] $1\,$ [/mm] ergeben.)

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de