www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthonormale Menge als Basis
Orthonormale Menge als Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormale Menge als Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 So 30.03.2008
Autor: polar_baer

Aufgabe
Man beweise, dass jede orthonormale Menge von n Vektoren in [mm] \IR^n [/mm] eine
Basis ist.

Hallo

Aus orthonormal folgt ja sofort linear unabhängig. Was mir noch nicht ganz klar ist: man muss ja noch zeigen, dass die Menge ein Erzeugendensystem ist. Anschaulich ist das ja klar, weil die n Vektoren orthogonal sind hat man quasi jede Richtung des Rn abgedeckt und kann sich so jeden Vektor zusammenbasteln. Aber wie zwängt man dies in ein mathematisches Argument?

Gruss

Björn

        
Bezug
Orthonormale Menge als Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 So 30.03.2008
Autor: MathePower

Hallo polar_baer,

> Man beweise, dass jede orthonormale Menge von n Vektoren in
> [mm]\IR^n[/mm] eine
>  Basis ist.
>  Hallo
>  
> Aus orthonormal folgt ja sofort linear unabhängig. Was mir
> noch nicht ganz klar ist: man muss ja noch zeigen, dass die
> Menge ein Erzeugendensystem ist. Anschaulich ist das ja
> klar, weil die n Vektoren orthogonal sind hat man quasi
> jede Richtung des Rn abgedeckt und kann sich so jeden
> Vektor zusammenbasteln. Aber wie zwängt man dies in ein
> mathematisches Argument?

Um zu zeigen daß diese n Vektoren des [mm]\IR^{n}[/mm] eine Basis bilden,
muß ja die lineare Unabhängigkeit erfüllt sein.

Seien [mm] v_{i} \in \IR^{n},\ 1 \le i \le n[/mm].

Dann muß gelten:

[mm]\alpha_{1}*v_{1} + \ \cdots \ + \alpha_{n}*v_{n}=0[/mm]

mit [mm]\alpha_{1}= \ \cdots \ = \alpha_{n}=0[/mm]

Wie zeigt man das?

Multipliziere die Gleichung für die lineare Unabhängigkeit skalar mit jedem [mm]v_{i}, \ 1 \le i \le n[/mm].

Nutze dann die Eigenschaft aus, daß die Menge dieser n Vektoren orthonormal ist.

>
> Gruss
>  
> Björn

Gruss
MathePower

Bezug
                
Bezug
Orthonormale Menge als Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 So 30.03.2008
Autor: polar_baer

Danke für die Antwort. Das ist aber nur die lineare Unabhängigkeit; wie zeigt man dann dass v1,...,vn auch ein Erzeugendensystem sind?

Gruss
Björn

Bezug
                        
Bezug
Orthonormale Menge als Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 So 30.03.2008
Autor: Merle23

[mm] \IR^{n} [/mm] ist n-dimensional und du hast n linear unabhängige Vektoren, also bilden sie eine Basis.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de