Orthonormalsystemnachweis < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 19:52 Do 08.06.2006 | Autor: | marcmorg |
Aufgabe | Auf [-1,1] definieren wir die Funktionen [mm] U_{n}(x) [/mm] , n=0,1,2,3,... , durch
[mm] U_{n}(cos [/mm] s) = [mm] \wurzel{2/\pi} [/mm] * [mm] \bruch{\sin(n+1)s}{\sin s}.
[/mm]
Man zeige, dass [mm] U_{n}(x) [/mm] ein Polynom n-ten Grades ist (das n-te Tschebyscheff Polynom 2.Art) und dass [mm] {U_{n}} [/mm] von n=0 bis unendlich
ein Orthonormalsystem bezüglich des Skalarproduktes <u,v> = [mm] \integral_{-1}^{1}{u(x) *\overline{v(x)} * \wurzel{1-x^{2}dx}} [/mm] ist.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo
ich hab diese Frage in einer Mathe Übung und hab so meine Probleme damit.
Um dies Polynomfrage zu klären dachte ich mir, dass ich einfach cos s substituiere und zeige, dass es das Tschebyscheffpolynom 2.Art ist.
Ich hoffe das langt!?
Beim zweiten Teil dachte ich mir dass ich zeige, dass wenn ich [mm] {U_{n}} [/mm] einfach in dass Integral einsetz und zeige dass das Kronekerdelta als Lösung herauskommt. Das klappt aber irgendwie nicht. Vielleicht hat ja jemand eine Idee. Freu mich über jede Antwort.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:12 Fr 09.06.2006 | Autor: | MatthiasKr |
Hallo marcus,
üblicherweise knallt man die fragen hier im forum die fragen nicht einfach so hin, sondern erläutert seine bisherigen ansätze, probleme etc..
darüberhinaus sind auch (eigentlich selbstverständliche) gesten der höflichkeit wie zB. eine begrüßung sehr gerne gesehen.
unter diesen umständen wird dir dann auch ziemlich sicher geholfen.
Gruß
Matthias
|
|
|
|
|