www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - PBZ Stammfunktion
PBZ Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PBZ Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Sa 09.02.2008
Autor: MacChevap

Aufgabe
[mm] \integral_{}^{}{\bruch{dx}{(x²+2x+3)^{3}}} [/mm]

Repetitorium, S.289 , Bsp.13.16 c)

Hallo !

Ich frage mich wie ich die Stammfunktion zu diesem Integral finde. ( Und was wäre, wenn im Zähler x² stünde oder der [mm] Nenner^{5} [/mm] ? )

[mm] \integral_{}^{}{\bruch{dx}{X²}} [/mm] = [mm] \bruch{2ax+b}{\Delta X}+\bruch{2a}{ \Delta}*\integral_{}^{}{\bruch{dx}{X}} [/mm]

Ist dieser Ansatz sinvoll ?Wenn ja, wie mache ich weiter, da diese Formel nur für X² gilt ?

Fragen über Fragen...ich danke trotzdem schonmal :)

Frage 2 :
[mm] \integral_{}^{}{\bruch{dx}{(1+x²)^{2}}} [/mm] wie komme ich auf diese Stammfunktion ?


        
Bezug
PBZ Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 09.02.2008
Autor: Gogeta259

also:
das zweite Integral würde ich mit einer substitution mit
[mm] x=i*\sin [/mm] t versuchen wobei i die Imaginäre einheit darstellt!

Bei der ersten würde ich genauso vorgehen nachdem ich die quadtatische Gleichung in die Form [mm] au^2+b [/mm] gebracht habe(mit substitution).

Bezug
        
Bezug
PBZ Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Sa 09.02.2008
Autor: Martinius

Hallo,

wenn ich in meiner Formelsammlung nachschaue, dann steht da drin:

[mm] $\integral \bruch{1}{(a^2+x^2)^2}\;dx [/mm] = [mm] \bruch{x}{2*a^2*(a^2+x^2)}+\bruch{1}{2a^3}*arctan\left(\bruch{x}{a}\right)$ [/mm]



[mm] $\integral \bruch{1}{X^n}\;dx [/mm] = [mm] \bruch{2ax+b}{(n-1)\Delta X^{n-1}}+\bruch{2(2n-3)a}{(n-1)\Delta}*\integral \bruch{1}{X^{n-1}}\;dx$ [/mm]    

mit  $X = [mm] (ax^2+bx+c)$ [/mm]  und  [mm] $\Delta [/mm] = [mm] 4ac-b^2$ [/mm]



LG, Martinius

Bezug
                
Bezug
PBZ Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Sa 09.02.2008
Autor: MacChevap

Danke Martinius, die zweite "erweiterte" Formel hilft mir weiter !

Kann einer noch, was zu
$ [mm] \integral \bruch{1}{(a^2+x^2)^2}\;dx [/mm] = [mm] \bruch{x}{2\cdot{}a^2\cdot{}(a^2+x^2)}+\bruch{1}{2a^3}\cdot{}arctan\left(\bruch{x}{a}\right) [/mm] $ sagen ?

Es geht darum, dass ich demnächst ne Klausur schreibe und ich auf solche Dinge ohne Formelsammlung kommen muss :/ . Falls da jemand weiß, wie man sich das herleiten kann, sei er recht herzlich eingeladen sein Wissen zu teilen mit mir/uns ;)

Ciao

Bezug
                        
Bezug
PBZ Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 Sa 09.02.2008
Autor: leduart

Hallo
das einzige ,was mir dazu einfällt ist:
[mm] \bruch{1}{a^2*(1+(x/a)^2)} [/mm] kann man mit [mm] x/a=\tan(z), dx/a=(1+\tan^2z)dz [/mm] lösen.
daher kommt der artan. auf den ersten Teil komm ich nicht.
Gruss leduart

Bezug
        
Bezug
PBZ Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 So 10.02.2008
Autor: ullim

Hi,


[mm] \integral_{}^{}{\bruch{dt}{(1+t^2)^2}} [/mm]

kann man wie folgt berechnen.

Durch partielle Integration folgt


[mm] \integral_{}^{}{\bruch{dt}{(1+t^2)}}=\bruch{t}{1+t^2}-\integral_{}^{}{\left(\bruch{d}{dt}\bruch{1}{(1+t^2)}\right)t dt} [/mm]

und

[mm] \bruch{d}{dt}\bruch{1}{(1+t^2)}=\bruch{-2t}{(1+t^2)^2} [/mm]

also


[mm] \integral_{}^{}{\bruch{dt}{(1+t^2)}}=\bruch{t}{1+t^2}+2\integral_{}^{}{\bruch{t^2}{(1+t^2)^2} dt} [/mm]


wegen

[mm] \bruch{t^2}{(1+t^2)^2}=\bruch{1}{(1+t^2)}-\bruch{1}{(1+t^2)^2} [/mm]

folgt

[mm] 2\integral_{}^{}{\bruch{dt}{(1+t^2)^2}}=\bruch{t}{1+t^2}+\integral_{}^{}{\bruch{dt}{(1+t^2)}} [/mm]

also


[mm] \integral_{}^{}{\bruch{dt}{(1+t^2)^2}}=\bruch{1}{2}*\bruch{t}{1+t^2}+\bruch{1}{2}*arctan(t) [/mm]

Für das Integral


[mm] \integral_{}^{}{\bruch{dx}{(a^2+x^2)^2}} [/mm] ergibt sich damit mit der Transformation [mm] t=\bruch{x}{a} [/mm]


[mm] \integral_{}^{}{\bruch{dx}{(a^2+x^2)^2}}=\bruch{1}{a^3}\integral_{}^{}{\bruch{dt}{(1+t^2)^2}}=\bruch{1}{a^3}\left(\bruch{1}{2}*\bruch{ax}{a^2+x^2}+\bruch{1}{2}*arctan(\bruch{x}{a})\right) [/mm]



mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de