www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - PDGL Variablentransformation
PDGL Variablentransformation < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PDGL Variablentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Do 04.06.2009
Autor: stoffi1388

Aufgabe
Gegeben sei das Anfangswertproblem (Cauchyproblem)
[mm] -x*u_x [/mm] + [mm] y*u_y [/mm] = x*u² mit u(x,1)=e^(-x)
Man bestimme
(i) die charakteristischen Kurven und mittels Koordinatentransformation (x,y)--> (w,z) die allgemeine Lösung u(x,y) der partiellen Differentialgleichung.
(ii) die spezielle Lösung des Cauchyproblems.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dazu gab es ein "Lösungsblatt" mit folgendem Hinweisen:
(i) Charakteristische Kurven: C=xy --> Variablentransformation: w(x,y)=xy ; z(x,y)=y mit u(x(w,z),y(w,z))=v(w,z) bzw. u(x,y)=v(w(x,y),z(x,y):
--> [mm] z²*v_z [/mm] = w*v²
--> v(w,z)=z/(w+z*Phi(w)) --> u(x,y)=y/(xy+y*Phi(xy))=1/(x+Phi(xy))
(ii) [mm] Phi(x)=(e^x) [/mm] - x --> [mm] u_s(x,y)=1/(x-xy+e^{xy}) [/mm]

Kann mir jemand erklären, wie man aus der Aufgabenstellung Rückschlüsse ziehen kann wie 1. die charakteristische Kurve ist und 2. wie die Koordinatentransformation/ Variablentransformation zu machen ist?

Danke im Vorraus für alle Feedbacks...

        
Bezug
PDGL Variablentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Fr 05.06.2009
Autor: MathePower

Hallo stoffi1388,


> Gegeben sei das Anfangswertproblem (Cauchyproblem)
>  [mm]-x*u_x[/mm] + [mm]y*u_y[/mm] = x*u² mit u(x,1)=e^(-x)
>  Man bestimme
>  (i) die charakteristischen Kurven und mittels
> Koordinatentransformation (x,y)--> (w,z) die allgemeine
> Lösung u(x,y) der partiellen Differentialgleichung.
>  (ii) die spezielle Lösung des Cauchyproblems.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Dazu gab es ein "Lösungsblatt" mit folgendem Hinweisen:
>  (i) Charakteristische Kurven: C=xy -->

> Variablentransformation: w(x,y)=xy ; z(x,y)=y mit
> u(x(w,z),y(w,z))=v(w,z) bzw. u(x,y)=v(w(x,y),z(x,y):
> --> [mm]z²*v_z[/mm] = w*v²
>  --> v(w,z)=z/(w+z*Phi(w)) -->

> u(x,y)=y/(xy+y*Phi(xy))=1/(x+Phi(xy))
>  (ii) [mm]Phi(x)=(e^x)[/mm] - x --> [mm]u_s(x,y)=1/(x-xy+e^{xy})[/mm]

>  
> Kann mir jemand erklären, wie man aus der Aufgabenstellung
> Rückschlüsse ziehen kann wie 1. die charakteristische Kurve
> ist und 2. wie die Koordinatentransformation/
> Variablentransformation zu machen ist?


Im Fall der charakteristischen Kurven betrachtet man

[mm]u=u\left( \ x\left(t\right), \ y\leftt\right) \ \right)[/mm]

Differenziert nach t ergibt das:

[mm]\bruch{du}{dt}=\bruch{\partial u}{\partial x}*\bruch{dx}{dt}+\bruch{\partial u}{\partial y}*\bruch{dy}{dt}[/mm]

Verglichen mit der gebenen partiellen DGL liefert das:

[mm]\bruch{dx}{dt}=-x[/mm]

[mm]\bruch{dy}{dt}=y[/mm]

Woraus sich dann die charakteristischwn Kurven ergeben.


Die Variablentransformation ist dann ählich zu machen.

[mm]u\left(x,y\right)=v\left( \ w\left(x,y\right), \ z\left(x,y\right) \ \ \right)[/mm]

Partielle Differentiation nach x und y ergeben:

[mm]\bruch{\partial u}{\partial x}=\bruch{\partial v}{\partial w}*\bruch{\partial w}{\partial x}+\bruch{\partial v}{\partial z}*\bruch{\partial z}{\partial x}[/mm]

[mm]\bruch{\partial u}{\partial y}=\bruch{\partial v}{\partial w}*\bruch{\partial w}{\partial y}+\bruch{\partial v}{\partial z}*\bruch{\partial z}{\partial y}[/mm]

Dies wird jetzt in die partielle DGL eingesetzt.


>  
> Danke im Vorraus für alle Feedbacks...


Gruß
MathePower

Bezug
                
Bezug
PDGL Variablentransformation: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Sa 06.06.2009
Autor: stoffi1388

Danke, jetzt hab ich einen Ansatz ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de