www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - PLU-Zerlegung
PLU-Zerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PLU-Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mo 31.03.2008
Autor: ronja33

Aufgabe
a) Lösen Sie das folgende lineare Gleichungssystem mit dem Gauß-Algorithmus mit Spaltenpivotisierung:
x1+2x2+3x3=10
2x1+      4x3=10
3x1+4x2+5x3=22
b) Zerlegen Sie die Koeffizientenmatrix aus a) entsprechend dem durchgeführten Algorithums in der Form PLU mit einer Permutationsmatrix P, einer unteren Dreiecksmatrix L mit Einsen auf der Diagonalen und einer oberen Dreiecksmatrix U.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,

Aufgabe a) habe ich ohne Probleme hinbekommen. x1=3, x2=2, x3=1
Schwierigkeiten habe ich bei Aufgabe b).
Meine Permutationsmatrix lautet :
P=  [mm] \pmat{0&0&1\\0&1&0\\1&0&0} [/mm]

Stimmt dies? Es ist die Inverse von
001
100
010

Meine obere Dreiecksmatrix U sieht so aus:

[mm] \pmat{3&4&5 \\0&2/3&4/3\\1/3&4 &1} [/mm]
Diese müsste eigentlich stimmen...habe sie durch Gauß-Umformung (Aufgabe a) erhalten.

Ich glaube, dass mein Fehler bei der links unteren Dreiecksmatrix L liegt:

L= [mm] \pmat{1&0&0\\2/3&1&0\\1/3&4&1} [/mm]

Ich habe, das so verstanden das auf die Diagonalen Einsen stehen und man ansonsten die Multiplikatoren einträgt, die man bei dem Gauß-Algorithmus anwendet.

Wenn ich nun all meine erhaltenen Matrizen multipliziere, erhalte ich nicht meine Koeffizientenmatrix.

Hoffe, es kann mir jemand helfen.
Vielen lieben Dank schon im Voraus!!!!

Grüße

ronja



                        


        
Bezug
PLU-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mo 31.03.2008
Autor: MathePower

Hallo ronja33,

> a) Lösen Sie das folgende lineare Gleichungssystem mit dem
> Gauß-Algorithmus mit Spaltenpivotisierung:
>  x1+2x2+3x3=10
>  2x1+      4x3=10
>  3x1+4x2+5x3=22
>  b) Zerlegen Sie die Koeffizientenmatrix aus a)
> entsprechend dem durchgeführten Algorithums in der Form PLU
> mit einer Permutationsmatrix P, einer unteren
> Dreiecksmatrix L mit Einsen auf der Diagonalen und einer
> oberen Dreiecksmatrix U.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo,
>  
> Aufgabe a) habe ich ohne Probleme hinbekommen. x1=3, x2=2,
> x3=1

Stimmt. [ok]

>  Schwierigkeiten habe ich bei Aufgabe b).
>  Meine Permutationsmatrix lautet :
> P=  [mm]\pmat{0&0&1\\0&1&0\\1&0&0}[/mm]
>  
> Stimmt dies? Es ist die Inverse von
> 001
>  100
>  010

Die Inverse einer Permutationsmatrix P ist dieselbe Matrix P.

>  
> Meine obere Dreiecksmatrix U sieht so aus:
>  
> [mm]\pmat{3&4&5 \\0&2/3&4/3\\1/3&4 &1}[/mm]
>  Diese müsste eigentlich
> stimmen...habe sie durch Gauß-Umformung (Aufgabe a)
> erhalten.
>  
> Ich glaube, dass mein Fehler bei der links unteren
> Dreiecksmatrix L liegt:
>  
> L= [mm]\pmat{1&0&0\\2/3&1&0\\1/3&4&1}[/mm]
>  
> Ich habe, das so verstanden das auf die Diagonalen Einsen
> stehen und man ansonsten die Multiplikatoren einträgt, die
> man bei dem Gauß-Algorithmus anwendet.
>  
> Wenn ich nun all meine erhaltenen Matrizen multipliziere,
> erhalte ich nicht meine Koeffizientenmatrix.
>  
> Hoffe, es kann mir jemand helfen.

Es stimmt nur die 1. Spalte von L und die 1. Zeile von U.

Den Rest musst also nochmal nachrechnen.

>  Vielen lieben Dank schon im Voraus!!!!
>  
> Grüße
>  
> ronja

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de