www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Parabelschar
Parabelschar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabelschar: gemeinsame punkte
Status: (Frage) beantwortet Status 
Datum: 11:56 So 21.11.2004
Autor: kiffic

bitte bitte helft mir..ich verstehe es nicht:

Untersuche die Parabelschar Pa : y= - [mm] \bruch{2}{3} x^{2} [/mm] + (1- [mm] \bruch{2}{a} [/mm] )x -2 , auf [mm] \not= [/mm] auf gemeinsame Punkte.

vielen dank im voraus

        
Bezug
Parabelschar: Ansatz
Status: (Antwort) fertig Status 
Datum: 12:16 So 21.11.2004
Autor: Bastiane

Hallo kiffic!
> bitte bitte helft mir..ich verstehe es nicht:
>  
> Untersuche die Parabelschar Pa : y= - [mm]\bruch{2}{3} x^{2}[/mm] +
> (1- [mm]\bruch{2}{a}[/mm] )x -2 , auf [mm]\not=[/mm] auf gemeinsame Punkte.
>  
> vielen dank im voraus
>  

Na, so schwierig dürfte das gar nicht sein.
Weißt du denn, was eine Parabelschar ist? Genau das, was du gegeben hast - eine Menge von Funktionen, wobei die Funktionen sich nur in einem kleinen Teil unterscheiden, nämlich dem a. Das heißt, wenn du so etwas gegeben hast, kannst du eine Kurvendiskussion damit machen, und wenn du dann z. B. Hochpunkte für a=1, a=2 usw. berechnen musst, brauchst du das nur für a in deine allgemeine "Formel" einzusetzen. Dafür ist das ganze da.
So, und nun ist die Frage, welche Punkte gemeinsam sind. Das heißt, alle Parabeln, die durch deine obige Gleichung gegeben sind, gehen irgendwo durch denselben Punkt, oder sogar durch mehrere dieselben Punkte. Wenn du z. B. [mm] y=x^a [/mm] hättest, dann würden alle Funktionen durch den Punkt (0,0) laufen. Und genau diese Punkte musst du berechnen.
Und wie macht man das jetzt? Gleichsetzen! (Das ist übrigens sehr oft hilfreich. :-))

Versuchs mal!
Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Parabelschar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 So 21.11.2004
Autor: Marc

Hallo kiffic,

> Untersuche die Parabelschar Pa : y= - [mm]\bruch{2}{3} x^{2}[/mm] +
> (1- [mm]\bruch{2}{a}[/mm] )x -2 , auf [mm]\not=[/mm] auf gemeinsame Punkte.

wie Bastiane ja bereits schrieb, sind das unendliche viele Funktionen (für jedes a eine Funktion), und du sollst überprüfen, ob alle einen Punkt gemeinsam haben.
Der "Trick" ist hier, sich zwei beliebige Funktionen aus dieser Menge herauszugreifen und diese dann gleichzusetzen -- wenn zwei beliebige Funktionen z.B. den Punkt (1|1) gemeinsam haben, dann müssen alle Funktionen diesen Punkt gemeinsam haben.

Dass die Auswahl der Funktionen beliebig ist, drückst du in deiner Rechnung durch Konstanten aus:

1. beliebige Funktion, zu [mm] $a=a_1$: $P_{a_1} [/mm] : y= - [mm] \bruch{2}{3} x^{2} [/mm] + (1- [mm] \bruch{2}{a_1} [/mm] )*x -2$
2. beliebige Funktion, zu [mm] $a=a_2$: $P_{a_2} [/mm] : y= - [mm] \bruch{2}{3} x^{2} [/mm] + (1- [mm] \bruch{2}{a_2} [/mm] )*x -2$

Diese beiden sind nun gleichzusetzen, beachte dabei, dass du ruhig annehmen kannst, dass [mm] $a_1\not=a_2$ [/mm] (sonst hättest du ja zwei Mal dieselbe Funktion ausgewählt).

Schreibe uns doch mal deine Ansätze.

Viele Grüße,
Marc

Bezug
                
Bezug
Parabelschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 So 21.11.2004
Autor: kiffic

vielen dank, ihr habt mir sehr geholfen!ich dachte mir auch sowas, dass ich [mm] f(x)_{1} [/mm] = [mm] f(x)a_{2} [/mm] gleichsetzen muss! nur komme ich dann nicht weiter,bekomme keine lösung!
hab mich vorhin verschrieben, heißt so:

Untersuche die Parabelschar Pa : y= - [mm] \bruch{1}{a} x^{2} [/mm] + (1- [mm] \bruch{2}{a} [/mm] )x -2



Bezug
                
Bezug
Parabelschar: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:43 So 21.11.2004
Autor: kiffic

vielen dank, ihr habt mir sehr geholfen!ich dachte mir auch sowas, dass ich [mm] f(x)_{1} [/mm] = [mm] f(x)a_{2} [/mm] gleichsetzen muss! nur komme ich dann nicht weiter,bekomme keine lösung!
hab mich vorhin verschrieben, heißt so:

Untersuche die Parabelschar Pa : y= [mm] \bruch{1}{a} x^{2} [/mm] + (1- [mm] \bruch{2}{a} [/mm] )x -2



Bezug
                        
Bezug
Parabelschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 So 21.11.2004
Autor: Marc

Hallo kiffic,

> vielen dank, ihr habt mir sehr geholfen!ich dachte mir auch
> sowas, dass ich [mm]f(x)_{1}[/mm] = [mm]f(x)a_{2}[/mm] gleichsetzen muss! nur
> komme ich dann nicht weiter,bekomme keine lösung!
>  hab mich vorhin verschrieben, heißt so:
>  
> Untersuche die Parabelschar Pa : y= [mm]\bruch{1}{a} x^{2}[/mm] +
> (1- [mm]\bruch{2}{a}[/mm] )x -2

Dann poste doch mal deine Rechnung, anders können wir sie ja nicht kontrollieren!

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de