www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Parallelschwingkreis
Parallelschwingkreis < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallelschwingkreis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:36 Fr 08.01.2016
Autor: bigdaddy78

Aufgabe
Eine Eintorschaltung soll betrachtet werden. Gegeben sind:
R1=1 Kiloohm, R2= 2 Kiloohm, L= 50µH

Geben sie allgemein den Wirk- und Blindwiderstand der Schaltung an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo zusammen. Zu dieser Aufgabe gibt es ein Schaltbild.
      
          --- L ---      Ich hoffe, dass das etwas ersichlich
          |       |      ist. Zur Erklärung: Der Widerstand
----R1---.--- C ---      R1 liegt in Reihe mit der Parallel-
          |       |      schaltung aus L; C; R2.
          --- R2---

Wie in der Aufgabe beschrieben, soll allg. der Wirk- und Blindwiderstand angeben werden.

In der Lösung kommt für den Wirkwiderstand R:

[mm] R=R1+\bruch {\omega^2L^2R2}{(R2-\omega^2LCR2)^2+\omega^2L^2)} [/mm]

raus.

Für den Blindwiderstand X kommt:  

[mm] X= \bruch {\omega*L*R2^2*(1-\omega^2LC)}{(R2-\omega^2LCR2)^2+\omega^2L^2} [/mm]

raus.

Mein Problem an der Aufgabe ist, dass ich nicht auf vorgegebenen Ergebnisse komme. Es wäre nett, wenn mir jemand bei der Lösung Hilfe geben könnte bzw. die Lösung nahe bringen kann.

Schon mal vielen Dank für eure Nachrichten.

Ich habe diese Frage in keinem Forum auf anderen
Internetseiten gestellt.

        
Bezug
Parallelschwingkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Fr 08.01.2016
Autor: isi1

Scheint richtig, was bringt denn der Aufgabensteller raus?
Bezug
        
Bezug
Parallelschwingkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Fr 08.01.2016
Autor: GvC

>...
> Mein Problem an der Aufgabe ist, dass ich nicht auf
> vorgegebenen Ergebnisse komme. Es wäre nett, wenn mir
> jemand bei der Lösung Hilfe geben könnte bzw. die Lösung
> nahe bringen kann.
> ...

Es wäre noch viel netter, wenn Du Deine Rechnung hier vorstellen würdest, damit man Dir sagen kann, an welcher Stelle Du Fehler gemacht hast.

Bezug
                
Bezug
Parallelschwingkreis: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 Mo 11.01.2016
Autor: bigdaddy78

Hallo zusammen!
Ich gebe hier mal meinen Lösungsweg an. Vielleicht gibt es ja jemanden, der sagt "das geht einfacher" oder es passt so wie es ist. Also:

[mm] R=R1+\bruch {R2* \omega L}{\omega L+j(\omega^2CLR2-R2)} [/mm]

Jetzt habe ich mit dem konj. kompl. Nenner erweitert:

[mm] R=R1+\bruch {R2* \omega L}{\omega L+j(\omega^2CLR2-R2)} * \bruch {\omega L-j(\omega^2CLR2-R2)}{\omega L-j(\omega^2CLR2-R2)} [/mm]

Durch ausmultiplizieren und vereinfachen erhält man:

[mm] R=R1+\bruch {R2*(\omega L]^2}{(\omega L)^2*(R2-\omega^2CLR2)^2}+j\bruch {R2^2*\omega L(1-\omega^2LC)}{(\omega L)^2*(R2-\omega^2CLR2)} [/mm]

Dies entspricht auch der Lösung. Mein Fehler an der Sache war wohl, dass ich nicht konj. kompl. erweitert habe. Falls es eine bessere Lösung gibt, bin ich offen dafür.

Vielen Dank bis hierhin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de