www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Parameter bestimmen
Parameter bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Fr 22.06.2012
Autor: Mathe-Andi

Aufgabe
Bestimmen Sie bei der Funktion h: [mm] h(x)=-x^{2}+4x+k [/mm] die Zahl k so, dass die Graphen der Funktionen h und f: [mm] f(x)=3x^{2}+4x-12 [/mm] genau einen gemeinsamen Punkt haben.

Hallo,

ich bin folgendermaßen vorgegangen:

-beide Gleichungen gleichsetzen
-anhand der quadratischen Gleichung die x-Werte des Schnittpunktes berechnen, dort kommt raus:

[mm] x_{1,2}= \pm\wurzel{3+\bruch{k}{4}} [/mm]

Da genau eine Lösung rauskommen muss, klingt das sehr nach Diskriminante. Dort kommt genau eine Lösung raus, wenn D=0 ist, d.h. k muss so gewählt werden, damit unter der Wurzel 0 steht.

Dies ist bei k=-12 der Fall.

x=0, k=-12

In einer der Funktionsgleichungen eingesetzt ergibt für y=-12.

Der einzige gemeinsame Punkt liegt bei (0;-12)

Ist mein Lösungsweg und mein Gedankengang richtig? (Funkyplot sagt ja!)


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Parameter bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Fr 22.06.2012
Autor: Diophant

Hallo,

> Bestimmen Sie bei der Funktion h: [mm]h(x)=-x^{2}+4x+k[/mm] die Zahl
> k so, dass die Graphen der Funktionen h und f:
> [mm]f(x)=3x^{2}+4x-12[/mm] genau einen gemeinsamen Punkt haben.
> Hallo,
>
> ich bin folgendermaßen vorgegangen:
>
> -beide Gleichungen gleichsetzen
> -anhand der quadratischen Gleichung die x-Werte des
> Schnittpunktes berechnen, dort kommt raus:
>
> [mm]x_{1,2}= \pm\wurzel{3+\bruch{k}{4}}[/mm]
>
> Da genau eine Lösung rauskommen muss, klingt das sehr nach
> Diskriminante. Dort kommt genau eine Lösung raus, wenn D=0
> ist, d.h. k muss so gewählt werden, damit unter der Wurzel
> 0 steht.
>
> Dies ist bei k=-12 der Fall.
>
> x=0, k=-12
>
> In einer der Funktionsgleichungen eingesetzt ergibt für
> y=-12.
>
> Der einzige gemeinsame Punkt liegt bei (0;-12)
>
> Ist mein Lösungsweg und mein Gedankengang richtig?
> (Funkyplot sagt ja!)

Ja, es ist alles richtig. Und es ist wie ich finde auch sehr gut und schlüssig begründet. In schriftlichen Prüfungen könnte man vielleicht so etwas wie die Berechnung von k aus der Forderung D=0 nicht verbal, sondern explizit durch ausrechnen zeigen, für eine mündliche Prüfung wäre es jedoch so wie du es gemacht hast perfekt.

Interessant auf jeden Fall (für den Fall, dass du das nicht eh schon weißt): du hast ja hier durch die Forderung D=0 eine Doppellösung konstruiert. Und dabei entstehen dann eben bei der Untersuchung auf gemeinsame Punkte zweier Graphen grundsätzlich Berührpunkte. Das kann man sich manchmal auch für Berührprobleme zu Nutze machen, ist hier allerdings etwas off-topic.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de