www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Parameter zur Stetigkeit
Parameter zur Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter zur Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Mi 16.02.2011
Autor: schwenker

Aufgabe
Gegeben sei die Funktion $ f: [mm] \IR\to\IR [/mm]  mit $
$x [mm] \mapsto [/mm] f(x):=  [mm] \begin{cases} ax^{3}+bx^{2}+b & \mbox{fuer} |x-1|\le1 \\ ax^{2}+\bruch{1}{2}b^{2}x+a+3 & \mbox{fuer} |x-1|>1 \end{cases} [/mm] $

Bestimmen Sie die Parameter [mm] a\le0 [/mm] und [mm] b\ge0 [/mm] so, dass f stetig ist.

Hallo Leute, hänge bei dieser Klausuraufgabe und zwar bei der Berechnung von a und b...
Mein Lösungsansatz bisher:

kritische Stelle bei x=2, also bei Übergang vom ersten Funktionsstrang in den zweiten.
Stetigkeitskriterium lautet:

$ [mm] \limes_{x\rightarrow 2^{-}} \\f(x) [/mm] =  [mm] \limes_{x\rightarrow 2^{+}} \\f(x) [/mm] = [mm] \\f(2) [/mm] $


$ [mm] \limes_{x\rightarrow 2^{-}} [/mm] 8a+4b+b [mm] =\limes_{x\rightarrow 2^{+}} [/mm] 4a+b²+a+3 = [mm] \\f(2)= [/mm] 8a+4b+b $

Um nun a und b herauszubekommen versuche ich folgendes Gleichungssystem zu lösen:

I. 8a+5b = 0          | [mm] \cdot [/mm] 5
II. 5a+b²+3 = 0     [mm] |\cdot [/mm] 8

I. 40a +25b=0
II. 40a+8b²+24=0      |II.-I.

II.-I. = 8b²-25b+24     |: 8
[mm] \gdw b^2-\bruch{25}{8}b+3 [/mm]

wenn ich dies nun versuche mithilfe der PQ-Formel aufzulösen scheitere ich, weil die Wurzel negativ wird:

[mm] \gdw x_{1,2}= -(-\bruch{\bruch{25}{8}}{2}) \pm \wurzel{(\bruch{-\bruch{25}{8}}{2})^{2} -3} [/mm]

Der Wurzelinhalt wird hier zu [mm] \approx [/mm] -0,559 was auf den reellen Zahlen ja nicht definiert ist.

Ich weiss nicht wo der Fehler liegt :(

Gruß schwenker


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Parameter zur Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Mi 16.02.2011
Autor: fred97


> Gegeben sei die Funktion [mm]f: \IR\to\IR mit[/mm]
>  [mm]x \mapsto f(x):= \begin{cases} ax^{3}+bx^{2}+b & \mbox{fuer} |x-1|\le1 \\ ax^{2}+\bruch{1}{2}b^{2}x+a+3 & \mbox{fuer} |x-1|>1 \end{cases}[/mm]
>  
> Bestimmen Sie die Parameter [mm]a\le0[/mm] und [mm]b\ge0[/mm] so, dass f
> stetig ist.
>  Hallo Leute, hänge bei dieser Klausuraufgabe und zwar bei
> der Berechnung von a und b...
>  Mein Lösungsansatz bisher:
>  
> kritische Stelle bei x=2,


und bei x=0  !!!   Denn: |x-1|=1   [mm] \gdw [/mm]  x=2 oder x=0

> also bei Übergang vom ersten
> Funktionsstrang in den zweiten.
>  Stetigkeitskriterium lautet:
>  
> [mm]\limes_{x\rightarrow 2^{-}} \\f(x) = \limes_{x\rightarrow 2^{+}} \\f(x) = \\f(2)[/mm]
>  
>
> [mm]\limes_{x\rightarrow 2^{-}} 8a+4b+b =\limes_{x\rightarrow 2^{+}} 4a+b²+a+3 = \\f(2)= 8a+4b+b[/mm]


Lass hier das lim weg !!

>  
> Um nun a und b herauszubekommen versuche ich folgendes
> Gleichungssystem zu lösen:
>  
> I. 8a+5b = 0          | [mm]\cdot[/mm] 5
> II. 5a+b²+3 = 0     [mm]|\cdot[/mm] 8



Wie kommst Du auf diesen Blödsinn ? ???

Du bekommst die Gleichung:  


8a+5b= [mm] 5a+b^2+3 [/mm]


Wenn Du mit der kritischen Stelle x=0 genauso verfährst, erhältst Du eine weitere Gleichung in a und b.


Zur Kontrolle: es sollte a=-1 und b=2 herauskommen.
(beachte: die Aufgabe fordert  $ [mm] a\le0 [/mm] $ und $ [mm] b\ge0 [/mm] $)

FRED


FRED

>  
> I. 40a +25b=0
>  II. 40a+8b²+24=0      |II.-I.
>  
> II.-I. = 8b²-25b+24     |: 8
>  [mm]\gdw b^2-\bruch{25}{8}b+3[/mm]
>  
> wenn ich dies nun versuche mithilfe der PQ-Formel
> aufzulösen scheitere ich, weil die Wurzel negativ wird:
>  
> [mm]\gdw x_{1,2}= -(-\bruch{\bruch{25}{8}}{2}) \pm \wurzel{(\bruch{-\bruch{25}{8}}{2})^{2} -3}[/mm]
>  
> Der Wurzelinhalt wird hier zu [mm]\approx[/mm] -0,559 was auf den
> reellen Zahlen ja nicht definiert ist.
>
> Ich weiss nicht wo der Fehler liegt :(
>  
> Gruß schwenker
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Parameter zur Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Mi 16.02.2011
Autor: schwenker


> > Gegeben sei die Funktion [mm]f: \IR\to\IR mit[/mm]
>  >  [mm]x \mapsto f(x):= \begin{cases} ax^{3}+bx^{2}+b & \mbox{fuer} |x-1|\le1 \\ ax^{2}+\bruch{1}{2}b^{2}x+a+3 & \mbox{fuer} |x-1|>1 \end{cases}[/mm]
>  
> >  

> > Bestimmen Sie die Parameter [mm]a\le0[/mm] und [mm]b\ge0[/mm] so, dass f
> > stetig ist.
>  >  Hallo Leute, hänge bei dieser Klausuraufgabe und zwar
> bei
> > der Berechnung von a und b...
>  >  Mein Lösungsansatz bisher:
>  >  
> > kritische Stelle bei x=2,
>
>
> und bei x=0  !!!   Denn: |x-1|=1   [mm]\gdw[/mm]  x=2 oder x=0
>  
> > also bei Übergang vom ersten
> > Funktionsstrang in den zweiten.
>  >  Stetigkeitskriterium lautet:
>  >  
> > [mm]\limes_{x\rightarrow 2^{-}} \\f(x) = \limes_{x\rightarrow 2^{+}} \\f(x) = \\f(2)[/mm]
>  
> >  

> >
> > [mm]\limes_{x\rightarrow 2^{-}} 8a+4b+b =\limes_{x\rightarrow 2^{+}} 4a+b²+a+3 = \\f(2)= 8a+4b+b[/mm]
>  
>
> Lass hier das lim weg !!
>  >  
> > Um nun a und b herauszubekommen versuche ich folgendes
> > Gleichungssystem zu lösen:
>  >  
> > I. 8a+5b = 0          | [mm]\cdot[/mm] 5
> > II. 5a+b²+3 = 0     [mm]|\cdot[/mm] 8
>  
>
>
> Wie kommst Du auf diesen Blödsinn ? ???
>  
> Du bekommst die Gleichung:  
>
>
> 8a+5b= [mm]5a+b^2+3[/mm]
>  
>
> Wenn Du mit der kritischen Stelle x=0 genauso verfährst,
> erhältst Du eine weitere Gleichung in a und b.
>  
>
> Zur Kontrolle: es sollte a=-1 und b=2 herauskommen.
>  (beachte: die Aufgabe fordert  [mm]a\le0[/mm] und [mm]b\ge0 [/mm])
>  
> FRED
>  

Danke Fred für die schnelle Hilfe! Ja da hab ich etwas durcheinander geworfen bei dem Aufstellen der Gleichungen. Und die 2.kritische Stelle hab ich verpennt...

also aus der Betrachtung von x=2 bekomm ich die  Gleichung

[mm] 8a+5b=5a+b^2+3 [/mm]
[mm] \gdw 3a-b^2+5b-3=0 [/mm]

Betrachtung der Stelle x=0:

[mm] \limes_{x\rightarrow 0^{-}} ax^2+\bruch{1}{2}b^2x+a+3 =\limes_{x\rightarrow 0^{+}} ax^3+bx^2+b= \\f(0)= ax^3+bx^2+b [/mm]
[mm] \gdw [/mm] a+3=b
[mm] \gdw [/mm] a=b-3   <--- Einsetzen in [mm] 3a-b^2+5b-3=0 [/mm] liefert:
[mm] 3\cdot(b-3)-b^2+5b-3=0 [/mm]
[mm] \gdw 3b-9-b^2+5b-3=0 [/mm]
[mm] \gdw b^2-8b+12=0 [/mm]
[mm] \gdw [/mm] (b-6)(b-2)=0
[mm] \gdw [/mm] b=6 v b=2

b=6 einsetzen in [mm] 3a-b^2+5b-3=0 [/mm] liefert:
3a-36+30-3=0
a=3

b=2 einsetzen in [mm] 3a-b^2+5b-3=0 [/mm] liefert:
3a-4+10-3=0
a=-1


Wie du schon gesagt hast fordert die Aufgabe [mm]a\le0[/mm] und [mm]b\ge0 [/mm], also fällt die Lösung b=6 [mm] \wedge [/mm] a=3 weg.

Mit den Parametern b=2 [mm] \wedge [/mm] a=-1 ist die Funktion stetig.

Bezug
                        
Bezug
Parameter zur Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Mi 16.02.2011
Autor: fred97

Jetzt stimmts

FRED

Bezug
                                
Bezug
Parameter zur Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Mi 16.02.2011
Autor: schwenker

Vielen Dank fred :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de