www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Parameteraufgabe/Falluntersch.
Parameteraufgabe/Falluntersch. < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameteraufgabe/Falluntersch.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Di 14.02.2006
Autor: Mathe0

Aufgabe
Folgende Funktion ist gegeben:
[mm] f_t(x)= \bruch{(t+1)}{16}*x^4- \bruch{1}{16}*x^3 -\bruch{t+1}{2}*x^2+3/4*x+t [/mm]

1. Bestimmen Sie die Hoch und Tiefpunkte.

2. Für welche Werte von t hat das Schaubild zwei Hochpunkte?

3. Für welche Werte von t liegt der Extremwert an der Stelle [mm] x=\bruch{3}{4*(t+1)} [/mm] links von 2 bzw. rechts von -2.

Hallo,

habe hier eine Parameteraufgabe bei der ich nicht auf die richtige Lösung komme. Ich poste mal meinen Lösungweg und hoffe mir kann jemand einen Tip geben wo mein Fehler liegt.

Zu 1) Eigentlich kein Problem durch gleichsetzen der ersten Ableitung mit null bekomme ich als Extremstellen: x=3/(4*(t+1)); x=2; x=-2

Wenn ich mit dem Taschenrechner kontrolliere kommt das auch so hin.

Zu 2) Soll es ein Hochpunkt sein muss ja die zweite Ableitung kleiner als null sein. Ich habe deshalb folgende Bedingung aufgestellt:

f''_t(2)<0 und f''_t(-2)<0

[mm] \Rightarrow [/mm] 0>2*t+5/4
                    0>2*t+11/4

Dann bekomme ich für t raus t<-5/8 und t<-11/8

Also für t<-11/8 stimmt es, da bekomme ich zwei Hochpunkte aber bei t<-5/8 weiterhin zwei Tiefpunkte. Warum das? Es sollten dann doch auch zwei Hochpunkte vorhanden sein?

Zu 4) Hier habe ich mir überlegt das der variable Punkte nur links von zwei liegen kann, wenn bei zwei entweder ein Tiefpunkt und bei -2 ein Hochpunkt oder bei zwei ein HP und bei -2 ein TP ist.

Also folgende Bedingungen:

[mm] f''_t(x)=t*(\bruch{3*x^2}{4}-1)+\bruch{3*x^2}{4}-\bruch{3*x}{8}-1 [/mm]

f''_t(2)>0 und f''_t(-2)<0

oder f''_t(2)<0 und f''_t(-2)>0

Stimmt das soweit? Ich bekomme hier einfach keine vernünftigen Lösungen raus wenn ich das als Gleichungssystem in den Taschenrechner eingebe. Kann mir jemand einen Tipp geben?

Schonmal Danke
Mfg
Mathe0


Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Parameteraufgabe/Falluntersch.: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:11 Di 14.02.2006
Autor: MathePower

Hallo Mathe0,

> Folgende Funktion ist gegeben:
>   [mm]f_t(x)= \bruch{(t+1)}{16}*x^4- \bruch{1}{16}*x^3 -\bruch{t+1}{2}*x^2+3/4*x+t[/mm]
>  
> 1. Bestimmen Sie die Hoch und Tiefpunkte.
>  
> 2. Für welche Werte von t hat das Schaubild zwei
> Hochpunkte?
>  
> 3. Für welche Werte von t liegt der Extremwert an der
> Stelle [mm]x=\bruch{3}{4*(t+1)}[/mm] links von 2 bzw. rechts von
> -2.
>  Hallo,
>  
> habe hier eine Parameteraufgabe bei der ich nicht auf die
> richtige Lösung komme. Ich poste mal meinen Lösungweg und
> hoffe mir kann jemand einen Tip geben wo mein Fehler liegt.
>
> Zu 1) Eigentlich kein Problem durch gleichsetzen der ersten
> Ableitung mit null bekomme ich als Extremstellen:
> x=3/(4*(t+1)); x=2; x=-2
>  
> Wenn ich mit dem Taschenrechner kontrolliere kommt das auch
> so hin.

Das bekomme ich auch ohne Taschenrechner heraus. [ok]

>  
> Zu 2) Soll es ein Hochpunkt sein muss ja die zweite
> Ableitung kleiner als null sein. Ich habe deshalb folgende
> Bedingung aufgestellt:
>  
> f''_t(2)<0 und f''_t(-2)<0
>  
> [mm]\Rightarrow[/mm] 0>2*t+5/4
>                      0>2*t+11/4
>  
> Dann bekomme ich für t raus t<-5/8 und t<-11/8
>  
> Also für t<-11/8 stimmt es, da bekomme ich zwei Hochpunkte
> aber bei t<-5/8 weiterhin zwei Tiefpunkte. Warum das? Es
> sollten dann doch auch zwei Hochpunkte vorhanden sein?

Zu untersuchen ist auch noch, für welche t bei [mm]x\;=\;\bruch{3}{4\;(t\;+\;1)}[/mm] ein Hochpunkt vorliegt.

Das musste dann mit den anderen beiden Lösungen irgendwie verkuddeln.

>  
> Zu 4) Hier habe ich mir überlegt das der variable Punkte
> nur links von zwei liegen kann, wenn bei zwei entweder ein
> Tiefpunkt und bei -2 ein Hochpunkt oder bei zwei ein HP und
> bei -2 ein TP ist.
>  
> Also folgende Bedingungen:
>  
> [mm]f''_t(x)=t*(\bruch{3*x^2}{4}-1)+\bruch{3*x^2}{4}-\bruch{3*x}{8}-1[/mm]
>  
> f''_t(2)>0 und f''_t(-2)<0
>  
> oder f''_t(2)<0 und f''_t(-2)>0

Hier würde ich einfach die Ungleichung

[mm]-2\;<\;\bruch{3}{4\;(t\;+\;1)}\;<\;2[/mm]

betrachten und auf Erfüllbarkeit untersuchen.

>  
> Stimmt das soweit? Ich bekomme hier einfach keine
> vernünftigen Lösungen raus wenn ich das als
> Gleichungssystem in den Taschenrechner eingebe. Kann mir
> jemand einen Tipp geben?
>  
> Schonmal Danke
>  Mfg
>  Mathe0
>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt.  

Gruß
MathePower

Bezug
                
Bezug
Parameteraufgabe/Falluntersch.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 15.02.2006
Autor: Mathe0

Hallo,

danke für die Antwort.
Ich habe mich jetzt nochmal an die Aufgabe drangesetzt hänge aber trotzdem fest

Also zu 2. Wenn ich jetzt noch wie mir geraten untersuche wann der variable Extrempunkt bei [mm] \bruch{3}{4*(t+1)} [/mm]  ein Hochpunkt ist, dann untersuche ich diese [mm] Gleichung:f''_t(\bruch{3}{4*(t+1)})<0 [/mm]

[mm] \Rightarrow [/mm] 0> [mm] \bruch{9}{64*(t+1)}-t-1 [/mm]

Am Ende bekomme ich dann eine Gleichung die so aussieht: [mm] 64*t^2+128t+64>9 [/mm] und ab da weis ich nicht mehr wie ich weiter machen soll.

Was mich auch wundert ist, dass wenn ich in meinen TI-92Plus

f''_t(2)<0 und f''_t(-2)<0 eingebe, er mir nur -5/8 als Lösung rausbringt.

Zu 3.

Hier habe ich Probleme mit den Ungleichungen

1. Ungleichung

-2<3/(4t+1)
-2(4t+4<3
-8t<11
t<-11/8

2. Ungleichung

2>3/(4t+4)
8t+8>3
t>--5/8

Wenn jetzt t als negativ angenommen wird verändert sich doch das><-Zeichen und man kann wiedersprüchliche Lösungen irgendwie ausschließen. Ich bekomme das aber irgendwie nicht mehr richtig auf die Reihe. Kann mir jemand bei den Ungleichungen helfen?

Schonmal Danke
Mfg
Mathe0

Bezug
                        
Bezug
Parameteraufgabe/Falluntersch.: Fallunterscheidungen
Status: (Antwort) fertig Status 
Datum: 09:49 Fr 17.02.2006
Autor: Roadrunner

Hallo Mathe0!



Bei der Umformung der Ungleichungen musst du im ersten Schritt aufpassen, ob Du mit einem positiven Wert multiplizierst oder einem negativen:

$4*(t+1) \ > \ 0$     [mm] $\gdw$ [/mm]     $t \ > \ -1$

$4*(t+1) \ < \ 0$     [mm] $\gdw$ [/mm]     $t \ < \ -1$


Daher musst Du hier eine Fallunterscheidung vornehmen. Ich zeige Dir das mal an einer der beiden Ungleichungen:

$-2 \ < \ [mm] \bruch{3}{4*(t+1)}$ [/mm]


Fall 1:  $4*(t+1) \ > \ 0$     [mm] $\gdw$ [/mm]     $t \ > \ -1$

[mm] $\gdw$ [/mm]   $-2*4*(t+1) \ < \ 3$

[mm] $\gdw$ [/mm]   $-8t-8 \ < \ 3$

[mm] $\gdw$ [/mm]   $-8t \ < \ 11$

[mm] $\gdw$ [/mm]   $t \ [mm] \red{>} [/mm] \ [mm] -\bruch{11}{8} [/mm] \ = \ -1.375$  Ungleichheitszeichen umkehren, da Division durch negative Zahl!

Teillösungsmenge: [mm] $L_1 [/mm] \ = \ [mm] \left\{ \ t \ > \ 1 \ \right\}$ [/mm]



Fall 2:  $4*(t+1) \ < \ 0$     [mm] $\gdw$ [/mm]     $t \ < \ -1$

[mm] $\gdw$ [/mm]   $-2*4*(t+1) \ [mm] \red{>} [/mm] \ 3$

[mm] $\gdw$ [/mm]   $-8t-8 \ > \ 3$

[mm] $\gdw$ [/mm]   $-8t \ > \ 11$

[mm] $\gdw$ [/mm]   $t \ [mm] \red{<} [/mm] \ [mm] -\bruch{11}{8} [/mm] \ = \ -1.375$  Ungleichheitszeichen umkehren, da Division durch negative Zahl!

Teillösungsmenge: [mm] $L_2 [/mm] \ = \ [mm] \left\{ \ t \ < \ -\bruch{11}{8} \ \right\}$ [/mm]


Damit ergibt sich folgende Gesamlösungsmenge:

$L \ = \ [mm] L_1 [/mm] \ [mm] \cup [/mm] \ [mm] L_2 [/mm] \ = \ [mm] \left\{ \ t \ < \ -\bruch{11}{8} \ \vee \ t \ > \ 1 \right\} [/mm] \ = \ [mm] \left]-\infty;-\bruch{11}{8}\right[ [/mm] \ [mm] \cup [/mm] \ [mm] \left]1;+\infty\right[$ [/mm]


Gruß vom
Roadrunner


Bezug
                        
Bezug
Parameteraufgabe/Falluntersch.: auch Fallunterscheidung
Status: (Antwort) fertig Status 
Datum: 10:00 Fr 17.02.2006
Autor: Roadrunner

Hallo Mathe0!


Zu Deinem Problem mit der 2. Ableitung. Auch hier musst Du dieselbe Fallunterscheidung vornehmen mit $t \ > -1$ bzw. $t \ < \ -1$ (siehe andere Antwort).

Anschließend musst Du die entstehende quadratische Gleichung in $t_$ lösen, zB. mit der MBp/q-Formel.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de