www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Parameterbestimmung von Punkt
Parameterbestimmung von Punkt < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterbestimmung von Punkt: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:55 Mi 23.02.2011
Autor: hans-itor

Aufgabe
Eine Ebene [mm] E_1 [/mm] mit dem Normalenvektor [mm] n=\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm] enthält den Punkt A(1;2;3). Bestimmen Sie den Parameter b e R des Punktes B=(b;0;-3) so, dass B den Abstand d=3 von der Ebene [mm] E_1 [/mm] besitzt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

So als erstes hab ich die Geradengleichung [mm] g_1 [/mm] aufgestellt. [mm] g_1: \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} [/mm] + lambda [mm] \begin{pmatrix} 1-b \\ 2-0 \\ 3-(-3) \end{pmatrix} [/mm]

[mm] E_1: \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm] * (r - [mm] r_0) [/mm]

Leider weiss ich jetzt nicht weiter, was ich machen soll. An das r und [mm] r_0 [/mm] komme ich im Moment nicht dran.

Wäre für Hilfe sehr dankbar.

        
Bezug
Parameterbestimmung von Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 23.02.2011
Autor: MathePower

Hallo hans-itor,

> Eine Ebene [mm]E_1[/mm] mit dem Normalenvektor [mm]n=\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm]
> enthält den Punkt A(1;2;3). Bestimmen Sie den Parameter b
> e R des Punktes B=(b;0;-3) so, dass B den Abstand d=3 von
> der Ebene [mm]E_1[/mm] besitzt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> So als erstes hab ich die Geradengleichung [mm]g_1[/mm] aufgestellt.
> [mm]g_1: \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}[/mm] + lambda
> [mm]\begin{pmatrix} 1-b \\ 2-0 \\ 3-(-3) \end{pmatrix}[/mm]
>  
> [mm]E_1: \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm] * (r - [mm]r_0)[/mm]
>  
> Leider weiss ich jetzt nicht weiter, was ich machen soll.
> An das r und [mm]r_0[/mm] komme ich im Moment nicht dran.


[mm]r_{0}[/mm] ist doch ein Punkt der Ebene;';

[mm]r_{0}=\pmat{1 \\ 2 \\ 3}[/mm]

Besser Du verwendest hier die Geradengleichung

[mm]g: \pmat{b \\ 0 \\ -3 } + \lambda \pmat{ 1 \\ 1 \\ 0}[/mm]

Dies setzt für r in die Ebenengleichung ein und
erhältst einen Wert für den Parameter [mm]\lambda[/mm].

Dann weisst Du das

[mm]\vmat{s*\pmat{ 1 \\ 1 \\ 0}}=3[/mm]

sein muss.

Daraus erhältst Du den Wert der Unbekannten b.


>  
> Wäre für Hilfe sehr dankbar.


Gruss
MathePower

Bezug
                
Bezug
Parameterbestimmung von Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Mi 23.02.2011
Autor: hans-itor

Hmmm so ganz klar komme ich noch nicht damit. Warum setzt du den Normalenvektor hinter das [mm] \lambda [/mm] bei der Geradengleichung? Und Punkt B an den Anfang der Geradengleichung? Ich hab das jetzt Probeweise mal in die Ebenengleichung eingesetzt und erhalte:
[mm] E_1: \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}*(\begin{pmatrix} b \\ 0 \\ 3 \end{pmatrix} [/mm] + [mm] \lambda\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm] - [mm] \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}) [/mm] = 1b + [mm] 2\lambda [/mm] - 3=0
Damit kann ich dann leider gar nichts anfangen, weil ich so kein [mm] \lambda [/mm] oder b ausrechnen kann.

Und was für eine Abstandsformel ist [mm] \vmat{s\cdot{}\pmat{ 1 \\ 1 \\ 0}}=3 [/mm] ? Wofür steht das s?


Bezug
                        
Bezug
Parameterbestimmung von Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mi 23.02.2011
Autor: MathePower

Hallo hans-itor,

> Hmmm so ganz klar komme ich noch nicht damit. Warum setzt
> du den Normalenvektor hinter das [mm]\lambda[/mm] bei der
> Geradengleichung? Und Punkt B an den Anfang der
> Geradengleichung? Ich hab das jetzt Probeweise mal in die
> Ebenengleichung eingesetzt und erhalte:
>  [mm]E_1: \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}*(\begin{pmatrix} b \\ 0 \\ 3 \end{pmatrix}[/mm]
> + [mm]\lambda\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}[/mm] -
> [mm]\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix})[/mm] = 1b + [mm]2\lambda[/mm]
> - 3=0


Hier muss es doch lauten:

[mm]\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}*(\begin{pmatrix} b \\ 0 \\ \blue{-}3 \end{pmatrix} + \lambda\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix})[/mm]


>  Damit kann ich dann leider gar nichts anfangen, weil ich
> so kein [mm]\lambda[/mm] oder b ausrechnen kann.


Du kannst aber [mm]\lambda[/mm] in Abhängigkeit von b ausdrücken.


>  
> Und was für eine Abstandsformel ist [mm]\vmat{s\cdot{}\pmat{ 1 \\ 1 \\ 0}}=3[/mm]
> ? Wofür steht das s?


s ist hier gleichbedeutende mit dem Parameter [mm]\lambda[/mm]

[mm]\vmat{\lambda*\pmat{ 1 \\ 1 \\ 0}}[/mm] ist der Abstand des Punktes
[mm]\pmat{b \\ 0 \\ -3}[/mm] zum Punkt [mm]\pmat{1 \\ 2 \\ 3}[/mm] auf der Ebene.


Gruss
MathePower  

Bezug
                                
Bezug
Parameterbestimmung von Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mi 23.02.2011
Autor: hans-itor

Ok, dann rechne ich: [mm] \wurzel{(\bruch{3-b}{2})^2+(\bruch{3-b}{2})^2}=3 [/mm]
und erhalte für [mm] b=3(1+\wurzel{2}), [/mm] kommt das hin?

Aber nochmal zur Geradengleichung?

g: r = [mm] r_1 [/mm] + [mm] \lambda [/mm] a . Ich kann leider deine Schritte nicht nachvollziehen, warm du für das [mm] r_1 [/mm] den Punkt B einsetzt und für das a das n der Ebene. Könntest du mir das erklären. Am besten für ganz Dumme, weil ich scheinbar massivst auf dem Schlauch stehe.
Vielen Dank im vorraus.

Bezug
                                        
Bezug
Parameterbestimmung von Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mi 23.02.2011
Autor: MathePower

Hallo hans-itor,

> Ok, dann rechne ich:
> [mm]\wurzel{(\bruch{3-b}{2})^2+(\bruch{3-b}{2})^2}=3[/mm]
>  und erhalte für [mm]b=3(1+\wurzel{2}),[/mm] kommt das hin?


Ja, das ist eine Lösung für b.   [ok]


>  
> Aber nochmal zur Geradengleichung?
>  
> g: r = [mm]r_1[/mm] + [mm]\lambda[/mm] a . Ich kann leider deine Schritte
> nicht nachvollziehen, warm du für das [mm]r_1[/mm] den Punkt B
> einsetzt und für das a das n der Ebene. Könntest du mir
> das erklären. Am besten für ganz Dumme, weil ich
> scheinbar massivst auf dem Schlauch stehe.


Der kürzeste Abstand eines Punktes B zu einer Ebene
ist immer der Betrag des Lotes vom Punkt P auf diese Ebene.

Da der Normalenvektor [mm]\vec{n}[/mm] auf der Ebene senkrecht steht,
muss die sich ergebende Gerade ebenfalls den Richtungsvektor [mm]\vec{n}[/mm] haben. Als Stützvektor dieser Geraden dient der Ortsvektor des Punktes B.

Daher lautet die Geradengleichung:

[mm]g:\vec{r}=\overrightarrow{OB}+\lambda*\vec{n}[/mm]


>  Vielen Dank im vorraus.


Gruss
MathePower

Bezug
                                                
Bezug
Parameterbestimmung von Punkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Mi 23.02.2011
Autor: hans-itor

Vielen Dank für deine Erklärung. Da werde ich mich bald wieder dran setzen und die Aufgabe nochmal rechnen.

Vielen Lieben Dank nochmal!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de