www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Parameterdarstellung - Ellipse
Parameterdarstellung - Ellipse < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterdarstellung - Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 29.01.2012
Autor: Strawberry1

Aufgabe
Gegeben ist eine Ellipse mit der Gleichung [mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm]

Gesucht ist nun eine Parameterdarstellung, die Tangente in einem allgemeinen Punkt und der umschlossene Flächeninhalt, letzterer mit Hilfe der Leibnizschen Sektorformel

[mm] A=\bruch{1}{2}\integral{det(c,c') dt} [/mm]

Leider stehe ich bei dieser Aufgabe momentan ziemlich auf der Leitung.
Naja die allgemeine Darstellung einer Kurve in Parameterform im [mm] \IR_{2} [/mm] ist ja

[mm] c(t)=(c_{1}(t),c_{2}(t)) [/mm]

Nur wie komme ich auf diese [mm] c(t) [/mm]? Beziehungsweise wann und wie führe ich den Parameter [mm] t [/mm] ein?

Herauskommen müsste ja eigentlich [mm] c(t)=\vektor{a*cost \\ b*sint} [/mm]
...

Nun ja...
Der zweite Teil der Aufgabe ist mir klar, (wie man die Tangente bildet) nur beim Flächeninhalt bin ich wieder etwas verwirrt.

Und zwar frage ich mich: Ist der "umschlossene Flächeninhalt" einfach der Flächeninhalt der Ellipse?
Und was ist mit [mm] det(c,c') [/mm] gemeint? Ist das etwa die Determinante der 2x2 Matrix die sich aus den beiden Vektoren [mm] c(t) [/mm] und [mm] c'(t) [/mm] ergibt?

Ich hoffe Ihr könnt mir helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Parameterdarstellung - Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 29.01.2012
Autor: leduart

Hallo
alle deine Fragen mit ja beantwortet. det(c,c' kann man auch als vektorprodukt bezeichnen, falls c aus [mm] \IR^2 [/mm] ist.
Wenn du die fkt [mm] y=b*\wurzel{1-x^2/a^2} [/mm] integrierst um etwa 1/4 der Ellipse zu kriegen, brauchst du für das Integral genau die Umformungen, die du auch bei der parametrisierung hast. Zudem sollst du lernen Flächen von geschlossenen Kurven zu berechnen, die man nicht immer wenigstens teilweise als Graph von Funktionen darstellen kann. Hier ist es wirklich viel einfacher die Flache so zu berechnen.
Gruss leduart  

Bezug
                
Bezug
Parameterdarstellung - Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 29.01.2012
Autor: Strawberry1

Aufgabe
Gegeben ist eine Ellipse mit der Gleichung [mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm]

Gesucht ist nun eine Parameterdarstellung, die Tangente in einem allgemeinen Punkt und der umschlossene Flächeninhalt, letzterer mit Hilfe der Leibnizschen Sektorformel

[mm] A=\bruch{1}{2}\integral{det(c,c') dt} [/mm]

Hallo,
danke für die schnelle Antwort!

Leider verstehe ich die Antwort nicht ganz:
Also, das mit der Fläche ist mir dann klar aber was soll das heißen:

>  Wenn du die fkt [mm]y=b*\wurzel{1-x^2/a^2}[/mm] integrierst um etwa
> 1/4 der Ellipse zu kriegen, brauchst du für das Integral
> genau die Umformungen, die du auch bei der parametrisierung
> hast.

Also die konkrete Frage ist:
Wie komme ich von dieser Form

[mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm]

zu dieser Form:

[mm] c(t)=\vektor{a*cost \\ b*sint} [/mm] ?

Danke schon mal im Voraus!


Bezug
                        
Bezug
Parameterdarstellung - Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 So 29.01.2012
Autor: leduart

Hallo
von der Parameterform auf die x,y form ist klar?
umgkehrt muss man das sehen, a) es läuft was um, Kreis kennt man, der wird in einer y_ richtung mit dem Faktor b/a gestaucht. Wenn du also vom Kreis (acost,asint) ausgehst und in y- richtung um b/a stauchst kommst du auf (acost,b/a*asint)
ebenso wenn du von [mm] x^2+y^2=a^2 [/mm] ausgehst und stauchst kommst du auf [mm] x^2+a^2/b^2y^2=a^2 [/mm]  die ellipsengleichng.
Gruss leduart

Bezug
                                
Bezug
Parameterdarstellung - Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 So 29.01.2012
Autor: Strawberry1


Also wie geht das denn umgekehrt? (also von der Parameterdarstellung zur expliziten Darstellung)
Hm...
Also das was du schreibst klingt ja ganz logisch, nur: Dazu muss ich ja genau wissen wie Meine Funktion aussieht. (Und auch die Parameterdarstellung des Kreises kennen) Denn du kommst ja auf die Lösung in dem du sagst: Ich weiß wie eine Ellipse im vergleich zu einem Kreis aussieht, und dann mehr oder weniger logisch überlegst. Aber was mache ich wenn die Funktion beliebig ist? Bzw. wie mache ich das bei Raumkurven?
Denn das nächste Beispiel (auf meinem Zettel) wäre dann: Die Parameterdarstellung eines Torus mit der z-Achse als Rotationsachse zu finden.
?

Grüße, Strawberry


Bezug
                                        
Bezug
Parameterdarstellung - Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 So 29.01.2012
Autor: leduart

Hallo
wenn man überhaupt sin und cos Funktion kennt, dann sollte klar sein, das (cost,sint) auf dem einheitskreis liegen, mit r mult. auf Kreis mit Radius r .
natürlich muss man was über die dinger wissen, wenn man sie geschickt parametrisieren will. aber etwa sin^2t+cos^2t=1 muss man schon kennen, mit funktionen, die man nicht kennt kann man schlecht was finden.
zum Torus: du kannst nen Kreis mit Radius r in der x-z Ebene oder der in der x-y ebene. also weisst du schon wie der torus da aussehen muss
[mm] (x-M)^2+z^2=r^2, [/mm] den kannst du schon mal parametrisieren. x=M+rcost  z=rsint  in der x- y ebene hast du auch nen Kreis [mm] x^2+y^2=R^2 [/mm] den kannst du auch parametrisieren. jetzt läuft der Mittelpunkt des kleinen Kreises auf dem grossen rum. dann hast du alle Teile .
Das ist aber keine Raumkurve, sondern eine Fläche! Darum brauchst du auch 2 Parameter!
für eine Kurve nur einen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de