www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Parametrisierung von Dreiecken
Parametrisierung von Dreiecken < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung von Dreiecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Di 21.07.2015
Autor: poeddl

Aufgabe
Parametrisierung eines Dreiecks

Hallo,

ich habe mal wieder ein paar Fragen und hoffe, ihr könnt mir mal wieder helfen.

Mir ist bewusst, dass man eine Gerade, die durch die Punkte P (-2|1) und Q (4|4) geht wie folgt parametrisieren kann:

x=(-2|1)+t(6|3), wobei t zwischen 0 und 1 liegt.

Hier direkt die erste Frage: Ist es grundsätzlich egal, ob ich P - Q oder Q - P für den Richtungsvektor nutze?



Wie gehe ich nun aber vor, wenn ich ein Dreieck und nicht nur eine Gerade parametrisieren möchte (im zweidimensionalen Raum, als auch im dreidimensionalen Raum)?
Ich wähle dann einen Aufpunkt und wie verfahre ich dann mit den Richtungsvektoren?
Ich habe ja drei Punkte, bspw. P(1,1), Q(4,1) und R(2,3)

Wie sieht dann die Parametrisierung aus, stimmt mein Ansatz?

[mm] x=\vektor{1 \\ 1} [/mm] + [mm] t\vektor{4-1 \\ 1-1} +s\vektor{2-1 \\ 3-1}=\vektor{1 \\ 1}+t\vektor{3 \\ 0}+s\vektor{1 \\ 2} [/mm]

Stimmt das so? Bzw. wie kann ich mir das vorstellen, wenn ich es zeichnen möchte? Ich starte beim Punkt (1,1) zu zeichnen und kann jetzt, wenn t zwischen 0 und 1 liegt eine Gerade bis zum Punkt (4,1) zeichnen.

Zeichne ich die Gerade mit dem Koeffizienten s jetzt vom Punkt (1,1) ausgehend?
Dann würde ich quasi den linken Schenkel zeichnen können, wenn s von 0 bis 1 läuft. Wie zeichne ich jetzt aber die dritte Gerade des Dreiecks?
Und wie gehe ich im Dreidimensionalen vor? Vielleicht hat dazu ja jemand noch eine Beispielaufgabe, ich konnte im Internet nichts mit Lösungen finden.

Über Antworten würde ich mich freuen und bedanke mich vorab für jegliche Hilfe!

        
Bezug
Parametrisierung von Dreiecken: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Di 21.07.2015
Autor: abakus


> Parametrisierung eines Dreiecks
> Hallo,

>

> ich habe mal wieder ein paar Fragen und hoffe, ihr könnt
> mir mal wieder helfen.

>

> Mir ist bewusst, dass man eine Gerade, die durch die Punkte
> P (-2|1) und Q (4|4) geht wie folgt parametrisieren kann:

>

> x=(-2|1)+t(6|3), wobei t zwischen 0 und 1 liegt.

>

> Hier direkt die erste Frage: Ist es grundsätzlich egal, ob
> ich P - Q oder Q - P für den Richtungsvektor nutze?

Zur Darstellung der Geraden: Ja.
Zur Darstellung/Parametrisierung der Strecke PQ: Jein.
Da du den Ortsvektor von P als Stützvektor verwendest, brauchst du für die Parametriesierung der Strecke PQ mit t-Werten 0 bis 1 den Vektor [mm]\overrightarrow{PQ}[/mm] (in deiner Formulierung: "Q - P").
Wenn du mit "P-Q" arbeiten willst (und auch vom Punkt P ausgehst), müsste t Werte von 0 bis -1 annehmen.
>
>
>

> Wie gehe ich nun aber vor, wenn ich ein Dreieck und nicht
> nur eine Gerade parametrisieren möchte (im
> zweidimensionalen Raum, als auch im dreidimensionalen
> Raum)?
> Ich wähle dann einen Aufpunkt und wie verfahre ich dann
> mit den Richtungsvektoren?
> Ich habe ja drei Punkte, bspw. P(1,1), Q(4,1) und R(2,3)

>

> Wie sieht dann die Parametrisierung aus, stimmt mein
> Ansatz?

>

> [mm]x=\vektor{1 \\ 1}[/mm] + [mm]t\vektor{4-1 \\ 1-1} +s\vektor{2-1 \\ 3-1}=\vektor{1 \\ 1}+t\vektor{3 \\ 0}+s\vektor{1 \\ 2}[/mm]

>

> Stimmt das so? Bzw. wie kann ich mir das vorstellen, wenn
> ich es zeichnen möchte? Ich starte beim Punkt (1,1) zu
> zeichnen und kann jetzt, wenn t zwischen 0 und 1 liegt eine
> Gerade bis zum Punkt (4,1) zeichnen.

>

> Zeichne ich die Gerade mit dem Koeffizienten s jetzt vom
> Punkt (1,1) ausgehend?
> Dann würde ich quasi den linken Schenkel zeichnen können,
> wenn s von 0 bis 1 läuft. Wie zeichne ich jetzt aber die
> dritte Gerade des Dreiecks?
> Und wie gehe ich im Dreidimensionalen vor? Vielleicht hat
> dazu ja jemand noch eine Beispielaufgabe, ich konnte im
> Internet nichts mit Lösungen finden.

>

> Über Antworten würde ich mich freuen und bedanke mich
> vorab für jegliche Hilfe!

Hallo,
wenn du für t und s jeweils alle Werte zwischen 0 und 1 zulässt, erhältst du alle Punkt im Inneren oder auf dem Rand des von PQ und PR aufgespannten Parallelogamms.
Mit der zusätzlichen Einschränktung s+t=1 bekommst du die Strecke QR.

Bezug
                
Bezug
Parametrisierung von Dreiecken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 Mi 22.07.2015
Autor: poeddl

Hallo,
vielen Dank für deine Antwort.

Ich kann mir leider nicht erklären, warum ich die Bedingung s+t=1 benötige, kann man sich das irgendwie grafisch erklären?

Und wie gehe ich vor, wenn ich ein Dreieck im Dreidimensionalen parametrisieren möchte? Ist das Vorgehen das gleiche, abgesehen davon, dass ich noch eine dritte Komponente im Vektor zu stehen habe ansonsten auch zwei Parameter s und t?

Und wenn ich jetzt eine Pyramide im 3D parametrisieren möchte, dann habe ich ja 4 Flächen, habe ich dann pro Fläche zwei Parameter, d.h. Insgesamt 8 Parameter? Oder ist das Vorgehen dann ein ganz anderes?

Viele Grüße und vielen Dank vorab!

Bezug
                        
Bezug
Parametrisierung von Dreiecken: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 22.07.2015
Autor: hippias

Eine Moeglichkeit sich die Bedingung klarzumachen waere so: Es seien $P$, $Q$, $R$ die Eckpunkte des Dreiecks. Es ist Dir ja klar, dass zwei seiner Kanten durch $P+sPR$ und $P+tPQ$, [mm] $0\leq s,t\leq [/mm] 1$ beschrieben werden koennen. Die dritte Kante ist dementsprechend $Q+rQR$, [mm] $0\leq r\leq [/mm] 1$.
Nun ist $Q= P+PQ$ und $R=P+ PR$. Also $Q+rQR= P+PQ+r(P+ PR-P-PQ)= P+ PQ-rPQ+rPR= P+(1-r)PQ+rPR$.
Damit lassen die Kantenpunkte als Linearkombination $P+sPQ+tPR$ mit $s= 1-r$ und $t=r$ darstellen, wobei wegen [mm] $0\leq r\leq [/mm] 1$ auch [mm] $0\leq s,t\leq [/mm] 1$ gilt und ferner $s+t=1-r+r=1$ gilt.

Fuer weitere Ueberlegungen koennte es fuer Dich aber einfacher sein, die Punktmengen nicht als Ausschnitte aus affinen Raeumen aufzufassen, sondern als konvexe Menge und statt Linearkombinationen Konvexkombinationen der Eckpunkte zu betrachten.

Bezug
                        
Bezug
Parametrisierung von Dreiecken: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Mi 22.07.2015
Autor: fred97

Seien P, Q und R Punkte im [mm] \IR^2 [/mm] oder im [mm] \IR^3 [/mm] (oder im [mm] \IR^n [/mm] oder in einem reellen Vektorraum) und sei [mm] \Delta [/mm] das von diesen 3 Punkten aufgespannte Dreieck [mm] (\Delta [/mm] = "Inneres" + "Rand").

Dann ist [mm] \Delta [/mm] die konvexe Hülle der Punkte P, Q und R, also

   [mm] $\Delta=\{rP+sQ+tR: r,s,t \in [0,1], r+s+t=1\}.$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de