www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Sa 01.03.2014
Autor: Ice-Man

Hllo,

ich habe zu dem Thema mal bitte nur eine kurze Verständnisfrage,

Mit folgendem Term wurde eine "Partialbruchzerlegung" durchgeführt.

[mm] y=\bruch{0,005}{(8x+1)(12x+1)} [/mm]

Die stationäre Verstärkung ist mit x=0 zu berechnen und die beiden Pole sind [mm] x_{1}=-\bruch{1}{8} [/mm] und [mm] x_{2}=-\bruch{1}{12} [/mm]
Das Ergebnis ist gegeben mit,

[mm] k=\bruch{A}{x}+\bruch{B}{8x+1}+\bruch{B}{12x+1} [/mm]

Ich verstehe nur nicht warum "2 mal B formuliert werden muss", es handelt sich doch eigentlich nur um ein Polynom 1.Grades.

Kann mir das evtl. jemand bitte erklären?

Schon einmal vielen Dank für eure Hilfe.

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Sa 01.03.2014
Autor: leduart

Hallo
irgendwas ist an deiner Aufgabe komisch. die Partialbruchzerlegung von
[mm] y=\bruch{0,005}{(8x+1)(12x+1)} [/mm]
ist
[mm] y=\bruch{A}{8x+1}+\bruch{B}{12x+1} [/mm]
woher soll denn das 1/x stammen?
Was meinst du mit "stationärer Verstärlung??
was ist die eigentliche Aufgabe?
Gruß leduart

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 01.03.2014
Autor: Ice-Man

Ich weis auch nicht wo, [mm] \bruch{1}{x}, [/mm] herkommt.
Es ist halt gefordert das von der Funktion y, die stationäre Verstärkung berechnet wird (x=0 setzen und ausrechnen).
Das wurde ja durchgeführt.
Und nun soll als eigentliches Ziel eine Sprungantwort berechnet werden.
Dafür benötige ich ja die einzelnen Koeffizienten.

Und das soll halt mit "Partialbruchzerlegung" ausgeführt werden.
Ich erhalte ja auch das gleiche Ergebnis wie du, jedoch ist es in der Lösung wie beschrieben, anders vorgegeben.
Und ich hatte halt gedacht das ich hier einmal frage ob ich da nochwas beachten muss bzw. ob ich etwas übersehen habe.


Jedenfalls danke für deine Hilfe.

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Sa 01.03.2014
Autor: leduart

Hallo
so ohne die eigentliche Aufgabe, und die Definition von stationärer Verstärkung ist deine Partialbrichzerlegung sicher keine für dein y.
also nochmel um was geht es? dazu müsste man die eigentliche  Aufgane lennen.
Gruss leduart

Bezug
                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Sa 01.03.2014
Autor: Ice-Man

Um die Temperatur in einem Reaktor regeln zu können sollen aus den durch physikalische
Modellierung erhaltenenen Differentialgeichungen für die Heizung und die
Temperaturänderung im Reaktor jeweils die Übertragungsfunktionen bestimmt werden.
Gesucht wird dann die Übertragungsfunktionen GH(s) = Q(s)/U(s) (Heizung)
und GR(s) = [mm] \nu(s)/Q(s) [/mm] (Reaktor) bestimmt werden. Die Gesamtübertragungsfunktion
soll bestimmt und anschliessend analysiert werden.

Die Differentialgleichungen sind wie folgt gegeben:

[mm] 8*\bruch{\partial q(t)}{\partial t}+q(t)=0,025*u(t) [/mm]

und

[mm] 12*\bruch{\partial\nu(t)}{\partial(t)}+\nu(t)=0,2*q(t) [/mm]

Bestimmen Sie die Pole von G(s), die stationäre Verstärkung und berechnen Sie die Sprungantwort


Das wäre die komplette Aufgabenstellung.

Ich entschuldige mich jetzt schon einmal das ich die Variablen in meinem Post ein wenig anders genannt habe. (Das war aber nur in meinen Aufzeichnungen so damit ich das persönlich besser unterscheiden konnte.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de