www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Partialbruchzerlegung
Partialbruchzerlegung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Simple Frage
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 28.05.2012
Autor: jackyooo

Aufgabe
Bestimmen Sie die reelle Partialbruchzerlegung.

[mm]\frac {1}{x^3+3x^2+3x+1}[/mm]

Hey,

mal ne kurze Frage. Reicht es bei der obrigen Aufgabenstellung, wenn ich einfach schreibe:

[mm]\frac {1}{x^3+3x^2+3x+1} = \frac{1}{(x+1)^3}[/mm]

oder ist da noch was anderes gefordert?

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 28.05.2012
Autor: Schadowmaster

moin,

Nein, das reicht wahrscheinlich nicht.
Guck noch einmal nach, wie genau Partialbruchzerlegung bei euch definiert wurde für den Fall, dass eine Nullstelle mehrfach auftritt.
Ich nehme an es ist etwas in der Art
[mm] $\frac{A}{x+1} [/mm] + [mm] \frac{B}{(x+1)^2}$ [/mm]
gesucht, aber sicherheitshalber solltest du nochmal nachgucken.


lg

Schadow


Bezug
                
Bezug
Partialbruchzerlegung: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Mo 28.05.2012
Autor: Loddar

Hallo Schadowmaster!


>  Ich nehme an es ist etwas in der Art [mm]\frac{A}{x+1} + \frac{B}{(x+1)^2}[/mm]  gesucht

Aber auch aus dieser genauen Aufteilung erhält man am Ende doch nur $A \ = \ B \ = \ 0$ sowie $C \ = \ 1$ und damit genau das oben genannte Ergebnis.


Gruß
Loddar


Bezug
                        
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 28.05.2012
Autor: jackyooo

Was ist denn C?

Bezug
                                
Bezug
Partialbruchzerlegung: vollständige Aufteilung
Status: (Antwort) fertig Status 
Datum: 00:59 Di 29.05.2012
Autor: Loddar

Hallo jackyoo!


Bei einer dreifachen Nullstelle (wie hier) lautet die vollständige Aufteilung:

[mm]\bruch{A}{x+1}+\bruch{B}{(x+1)^2}+\bruch{\red{C}}{(x+1)^3}[/mm]


Gruß
Loddar


Bezug
        
Bezug
Partialbruchzerlegung: reicht m.E. aus
Status: (Antwort) fertig Status 
Datum: 22:39 Mo 28.05.2012
Autor: Loddar

Hallo jackyoo!


Meines Erachtens reicht das aus. [ok] Denn auch aus der o.g. genauen Aufteilung erhältst Du am Ende nichts anderes als Dein Ergebnis.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de