www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Partiell ableiten, 3 Parameter
Partiell ableiten, 3 Parameter < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partiell ableiten, 3 Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Mo 25.10.2010
Autor: JaykopX

Ich habe in einem Skript zur Thermodynamik folgende Funktion:
U(S, V, N).

Nun steht weiter im Skript das U homogen vom Grad 1 ist also:
[mm] U(\lambda [/mm] S, [mm] \lambda [/mm] V, [mm] \lambda [/mm] N) = [mm] \lambda [/mm] U(S, V, N)

Jetzt schreibt der Prof.: differnzieren nach [mm] \lambda [/mm]  und kommt auf folgende Gleichung:
[mm] \bruch{\partial U(\lambda S, \lambda V, \lambda N)}{\partial(\lambda S)} \cdot \bruch{\partial (\lambda S)}{\partial \lambda} [/mm] + [mm] \bruch{\partial U(\lambda S, \lambda V, \lambda N)}{\partial(\lambda V)} \cdot [/mm] V [mm] +\bruch{\partial U(\lambda S, \lambda V, \lambda N)}{\partial(\lambda N)} \cdot [/mm] N = U(S, V, N)

Rechte Seite versteh ich, aber die linke Seite verstehe ich nicht ganz.
Ich verstehe nicht welche Regeln er anwendet um auf diese Gleichung zu kommen.
Ich sehe da irgendwie die Kettenregel, aber ich komm nicht auf sein Ergebnis. Vorallem verwirrt mich, dass er nicht nach [mm] \lambda [/mm] sondern nach [mm] \lambda [/mm] S, [mm] \lambda [/mm] V und [mm] \lambda [/mm] N ableitet.
Ich benötige einen Ansatz wie man eine Funktion mit mehreren Paramtern partiell ableitet(wobei hier ja alle Paramtern von [mm] \lambda [/mm] abhängen??)
Kann vieleicht Jemand einen aufschlussreichen zwischenschritt angeben?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partiell ableiten, 3 Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 25.10.2010
Autor: MathePower

Hallo JaykopX,

> Ich habe in einem Skript zur Thermodynamik folgende
> Funktion:
>  U(S, V, N).
>  
> Nun steht weiter im Skript das U homogen vom Grad 1 ist
> also:
>  [mm]U(\lambda[/mm] S, [mm]\lambda[/mm] V, [mm]\lambda[/mm] N) = [mm]\lambda[/mm] U(S, V, N)
>  
> Jetzt schreibt der Prof.: differnzieren nach [mm]\lambda[/mm]  und
> kommt auf folgende Gleichung:
>  [mm]\bruch{\partial U(\lambda S, \lambda V, \lambda N)}{\partial(\lambda S)} \cdot \bruch{\partial (\lambda S)}{\partial \lambda}[/mm]
> + [mm]\bruch{\partial U(\lambda S, \lambda V, \lambda N)}{\partial(\lambda V)} \cdot[/mm]
> V [mm]+\bruch{\partial U(\lambda S, \lambda V, \lambda N)}{\partial(\lambda N)} \cdot[/mm]
> N = U(S, V, N)
>  
> Rechte Seite versteh ich, aber die linke Seite verstehe ich
> nicht ganz.
>  Ich verstehe nicht welche Regeln er anwendet um auf diese
> Gleichung zu kommen.
>  Ich sehe da irgendwie die Kettenregel, aber ich komm nicht
> auf sein Ergebnis. Vorallem verwirrt mich, dass er nicht
> nach [mm]\lambda[/mm] sondern nach [mm]\lambda[/mm] S, [mm]\lambda[/mm] V und [mm]\lambda[/mm]
> N ableitet.


Allgemein lautet die Funktion:

[mm]U\left( \ g_{1}\left(\lambda,S\right), \ g_{2}\left(\lambda,V\right), \ g_{3}\left(\lambda,N\right) \ \right)[/mm]

,wobei hier

[mm]g_{1}\left(\lambda,S\right)=\lambda*S[/mm]

[mm]g_{2}\left(\lambda,V\right)=\lambda*V[/mm]

[mm]g_{3}\left(\lambda,N\right)=\lambda*N[/mm]

ist.


Differentiation nach [mm]\lambda[/mm] mit Hilfe
der verallgemeineten Kettenregel ergibt:

[mm]\bruch{\partial U\left( \ g_{1}\left(\lambda,S\right), \ g_{2}\left(\lambda,V\right), \ g_{3}\left(\lambda,N\right) \ \right)}{\partial \lambda}=\bruch{\partial U\left( \ g_{1}\left(\lambda,S\right), \ g_{2}\left(\lambda,V\right), \ g_{3}\left(\lambda,N\right) \ \right)}{\partial g_{1}\left(\lambda,S\right)}*\bruch{\partial g_{1}\left(\lambda,S\right)}{\partial \lambda}}[/mm]
[mm]+\bruch{\partial U\left( \ g_{1}\left(\lambda,S\right), \ g_{2}\left(\lambda,V\right), \ g_{3}\left(\lambda,N\right) \ \right)}{\partial g_{2}\left(\lambda,V\right)}*\bruch{\partial g_{2}\left(\lambda,V\right)}{\partial \lambda}}[/mm]
[mm]+\bruch{\partial U\left( \ g_{1}\left(\lambda,S\right), \ g_{2}\left(\lambda,V\right), \ g_{3}\left(\lambda,N\right) \ \right)}{\partial g_{3}\left(\lambda,N\right)}*\bruch{\partial g_{3}\left(\lambda,N\right)}{\partial \lambda}}[/mm]

bzw. etwas kürzer:

[mm]\bruch{\partial U}{\partial \lambda}=\bruch{\partial U}{\partial g_{1}}*\bruch{\partial g_{1}}{\partial \lambda}}+\bruch{\partial U}{\partial g_{2}}*\bruch{\partial g_{2}}{\partial \lambda}}+\bruch{\partial U}{\partial g_{3}}*\bruch{\partial g_{3}}{\partial \lambda}}[/mm]


Ist [mm]f:\IR^{n} \to \IR}[/mm] und [mm]g_{i}:\IR^{n} \to \IR, i=1, \ ... \, m \subset \IN[/mm]

Dann ist die partielle Ableitung von

[mm]f\left(\ x_{1}, \ ... \ , \ x_{n}\right)=f\left( \ g_{1}\left(\ x_{1}, \ ... \ , \ x_{n}\right), \ ... \ , \ g_{m}\left(\ x_{1}, \ ... \ , \ x_{n}\right) \ \right)[/mm]

nach [mm]x_{k}, \ 1 \le k \le n[/mm]:

[mm]\bruch{\partial f}{\partial x_{k}}=\bruch{\partial f}{\partial g_{1}}*\bruch{\partial g_{1}}{\partial x_{k}}+ \ ... \ + \bruch{\partial f}{\partial g_{m}}*\bruch{\partial g_{m}}{\partial x_{k}}=\summe_{i=1}^{m}\bruch{\partial f}{\partial g_{i}}*\bruch{\partial g_{i}}{\partial x_{k}}}[/mm]


>  Ich benötige einen Ansatz wie man eine Funktion mit
> mehreren Paramtern partiell ableitet(wobei hier ja alle
> Paramtern von [mm]\lambda[/mm] abhängen??)
>  Kann vieleicht Jemand einen aufschlussreichen
> zwischenschritt angeben?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Partiell ableiten, 3 Parameter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Mo 25.10.2010
Autor: JaykopX

ah, ok. Er hat die Parameter als Funktionen von [mm] \lambda [/mm] ausgedrückt und dann die verallgemeineten Kettenregel angewandt.

Vielen Dank!

Bezug
        
Bezug
Partiell ableiten, 3 Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mo 25.10.2010
Autor: fred97

Ich würde es so machen ( ich schreibe x statt [mm] \lambda) [/mm]

Sei $g(x):= (xS,xV,xN)$  und $F(x)= U(g(x))$

Nach der Kettenregel ist

       $F'(x)= U'(g(x))*g'(x)= gradU(g(x))* [mm] (S,V,N)^t= U_S(g(x))*S+U_V(g(x))*V+U_N(g(x))*N$ [/mm]

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de