www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Partielle Ableitung
Partielle Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Sa 09.02.2008
Autor: MissChilli

Aufgabe
Leiten Sie folgende Ausgabefunktion nach [mm] p_{2} [/mm] ab und bestimmen Sie so die Hicks'sche Nachfragefunktion nach dem Gut 2:

[mm] e(p_{1},p_{2}, \overline{U}) [/mm] = [mm] \bruch{\overline{U^{2}}p_{1}p_{2}}{(p_{1}+p_{2})} [/mm]

Hallo,

ich bin gerade am verzweifeln, weil ich mit der partiellen Ableitung nicht klarkomme...

Habe die rechte Seite umgeformt, weil ich so lieber rechne:

[mm] e(p_{1},p_{2}, \overline{U}) [/mm] = [mm] \overline{U^{2}}p_{1}^{1}p_{2}^{1}*(p_{1}+p_{2})^{-1} [/mm]

[mm] \bruch{\partial e}{\partial p_{2}} [/mm] = [mm] \overline U^{2}p_{1}*-(p_{1}+p_{2})^{-2} [/mm]

Dann wäre aber die Ableitung negativ, was keinen Sinn macht...

Habe dafür die Kettenregel verwendet. Stimmt das so?
Dann wäre aber die Ableitung negativ, was keinen Sinn macht...

Danke für die Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Sa 09.02.2008
Autor: MatthiasKr

Hallo,
> Leiten Sie folgende Ausgabefunktion nach [mm]p_{2}[/mm] ab und
> bestimmen Sie so die Hicks'sche Nachfragefunktion nach dem
> Gut 2:
>  
> [mm]e(p_{1},p_{2}, \overline{U})[/mm] =
> [mm]\bruch{\overline{U^{2}}p_{1}p_{2}}{(p_{1}+p_{2})}[/mm]
>  Hallo,
>  
> ich bin gerade am verzweifeln, weil ich mit der partiellen
> Ableitung nicht klarkomme...
>  
> Habe die rechte Seite umgeformt, weil ich so lieber
> rechne:
>  
> [mm]e(p_{1},p_{2}, \overline{U})[/mm] =
> [mm]\overline{U^{2}}p_{1}^{1}p_{2}^{1}*(p_{1}+p_{2})^{-1}[/mm]
>  
> [mm]\bruch{\partial e}{\partial p_{2}}[/mm] = [mm]\overline U^{2}p_{1}*-(p_{1}+p_{2})^{-2}[/mm]
>  
> Dann wäre aber die Ableitung negativ, was keinen Sinn
> macht...
>  
> Habe dafür die Kettenregel verwendet. Stimmt das so?
> Dann wäre aber die Ableitung negativ, was keinen Sinn
> macht...
>  
> Danke für die Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

sieh es doch mal so: deine funktion ist ein produkt aus zwei funktionen:

[mm] $e(p_1,p_2,U)=f_1(p_1,p_2,U)\cdot f_2(p_1,p_2)$ [/mm]

mit

[mm] $f_1(p_1,p_2,U)=Up_1 p_2$ [/mm] und

[mm] $f_2(p_1,p_2)= (p_1+p_2)^{-1}$ [/mm]

Wenn du diese funktion ableiten willst, musst du also auch die produktregel anwenden. Versuch das mal!

gruss
matthias

Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 So 10.02.2008
Autor: MissChilli

Hallo,

danke fuer deine Antwort!

Aber fuer die zweite Funktion bräuchte ich doch die Kettenregel, oder?

Ich hab das gerade mal probiert und bekomme folgende Ergebnisse, wenn ich nur nach [mm] p_{1} [/mm] ableite:

fuer [mm] f_{1} [/mm] = [mm] \overline{U}^2 p_{1}p_{2} [/mm]

[mm] \bruch{\partial f_{1}}{\partial p_{1}} [/mm] = [mm] \overline{U}^2 p_{2} [/mm]

und fuer [mm] f_{2} [/mm] = [mm] (p_{1}+p_{2})^-^1 [/mm]

[mm] \bruch{\partial f_{2}}{\partial p_{1}} [/mm] = - [mm] 1(p_{1}+p_{2})^-2 [/mm]

dann wäre also nach der Produktregel:

[mm] \bruch{\partial e}{\partial p_{1}} [/mm] = [mm] \overline{U}^2 p_{2}*(p_{1}+p_{2})^-^1 [/mm] - [mm] 1(p_{1}+p_{2})^-^2*\overline{U}^2 p_{1}p_{2} [/mm]
stimmt das so??

zusammengefasst bekomme ich dann:

[mm] \bruch{\partial e}{\partial p_{1}} [/mm] = [mm] \bruch{\overline{U}^2 p_{2}}{(p_{1}+p_{2})} [/mm] - [mm] \bruch{\overline{U}^2 p_{1}p_{2}}{(p_{1}+p_{2})^2} [/mm]

wäre das ganze dann nicht auch negativ?? wär nett, wenn du mir sagen könntest, ob ich das so richtig gemacht habe...vielen dank!
LG

Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 So 10.02.2008
Autor: MatthiasKr


> Hallo,
>  
> danke fuer deine Antwort!
>  
> Aber fuer die zweite Funktion bräuchte ich doch die
> Kettenregel, oder?
>  
> Ich hab das gerade mal probiert und bekomme folgende
> Ergebnisse, wenn ich nur nach [mm]p_{1}[/mm] ableite:
>  
> fuer [mm]f_{1}[/mm] = [mm]\overline{U}^2 p_{1}p_{2}[/mm]
>  
> [mm]\bruch{\partial f_{1}}{\partial p_{1}}[/mm] = [mm]\overline{U}^2 p_{2}[/mm]
>  
> und fuer [mm]f_{2}[/mm] = [mm](p_{1}+p_{2})^-^1[/mm]
>  
> [mm]\bruch{\partial f_{2}}{\partial p_{1}}[/mm] = -
> [mm]1(p_{1}+p_{2})^-2[/mm]
>  
> dann wäre also nach der Produktregel:
>  
> [mm]\bruch{\partial e}{\partial p_{1}}[/mm] = [mm]\overline{U}^2 p_{2}*(p_{1}+p_{2})^-^1[/mm]
> - [mm]1(p_{1}+p_{2})^-^2*\overline{U}^2 p_{1}p_{2}[/mm]
>  stimmt das
> so??
>  
> zusammengefasst bekomme ich dann:
>  
> [mm]\bruch{\partial e}{\partial p_{1}}[/mm] = [mm]\bruch{\overline{U}^2 p_{2}}{(p_{1}+p_{2})}[/mm]
> - [mm]\bruch{\overline{U}^2 p_{1}p_{2}}{(p_{1}+p_{2})^2}[/mm]
>  
> wäre das ganze dann nicht auch negativ?? wär nett, wenn du
> mir sagen könntest, ob ich das so richtig gemacht
> habe...vielen dank!
>  LG

sieht gut aus! [daumenhoch] Ob der term negativ wird, haengt von den werten ab, die du einsetzt. Die ableitung ist jedenfalls richtig.

gruss
matthias


Bezug
                                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:32 So 10.02.2008
Autor: MissChilli

Puh, dann bin ich aber froh, vielen lieben Dank! :)

...aber sag mal, wenn [mm] p_{1}, p_{2} [/mm] und U > 0 sind, wird der Wert dann nicht negativ...?

Bezug
                                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:39 So 10.02.2008
Autor: leduart

Hallo
Nein, du kannst aus deinem Ausdruck
[mm] U^2*\bruch{p2}{p1+p2}*(1-\bruch{p1}{p1+p2}) [/mm] machen,

und siehst dann dass die Klammer nicht negativ ist, weil [mm] \bruch{p1}{p1+p2}<1 [/mm]

Gruss leduart

Bezug
                                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:08 So 10.02.2008
Autor: MissChilli

Aha, jetzt hab ichs verstanden. Vielen, vielen Dank.
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de