www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:06 Mi 24.04.2013
Autor: Mopsi

Aufgabe
Ermittle die partiellen Ableitungen erster Ordnung von

1.
[mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]

2.
[mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]



Schönen guten Abend :)

Zu 1:

Hier muss ich die Produktregel anwenden.

[mm] \frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]

Ist das soweit richtig, ich habe bist jetzt nur die PR angewendet?
Aber ich sehe nicht genau was man da nun kürzen kann bzw. wie ich weitermachen soll?

Mopsi

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mi 24.04.2013
Autor: Adamantin


> Ermittle die partiellen Ableitungen erster Ordnung von
>  
> 1.
>  [mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]
>  
> 2.
>  
> [mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]
>  
>
> Schönen guten Abend :)
>  
> Zu 1:
>  
> Hier muss ich die Produktregel anwenden.
>  
> [mm]\frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]
>  
> Ist das soweit richtig, ich habe bist jetzt nur die PR
> angewendet?
>  Aber ich sehe nicht genau was man da nun kürzen kann bzw.
> wie ich weitermachen soll?

Ahhh bitte bitte bei partiellen Ableitungen kein d sondern ein [mm] $\partial{}$, [/mm] das wärte schonmal gaaanz wichtig ;) Ansonsten ja, da du beim partiellen Ableiten jeweils alle bis auf eine gewünschte Variable konstant hälst, unterscheidet es sich prinzipiell nicht vom "ableiten" im eindimensionalen. Daher ist die Produktregel sicherlich richtig. Du hast allerdings in der Klammer nach dem ln ein Plus vergessen. Ansonsten ist da auch nicht mehr viel mit Zusammenfassen, dies verhindert der ln.

>  
> Mopsi


Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Mi 24.04.2013
Autor: Mopsi


> > Ermittle die partiellen Ableitungen erster Ordnung von
> >
> > 1.
> > [mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]
> >
> > 2.
> >
> >
> [mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]
> >
> >
> > Schönen guten Abend :)
> >
> > Zu 1:
> >
> > Hier muss ich die Produktregel anwenden.
> >
> > [mm]\frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]

>

> >
> > Ist das soweit richtig, ich habe bist jetzt nur die PR
> > angewendet?
> > Aber ich sehe nicht genau was man da nun kürzen kann
> bzw.
> > wie ich weitermachen soll?

>

> Ahhh bitte bitte bei partiellen Ableitungen kein d sondern
> ein [mm]\partial{}[/mm], das wärte schonmal gaaanz wichtig ;)

Okay, merke ich mir :)

> Du hast allerdings in der Klammer nach dem ln ein
> Plus vergessen.

Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

> Ansonsten ist da auch nicht mehr viel mit
> Zusammenfassen, dies verhindert der ln.

>
Super :)

[mm] \frac{\partial{f}}{\partial{y}} = (3y^2x+2x^2)ln(x^2+y^2+xy) + (xy^3+2x^2y)( \frac{2y+x}{x^2+y^2+xy})[/mm]

Ist das richtig?

​Mopsi
 

Bezug
                        
Bezug
Partielle Ableitung: das fehlende Plus
Status: (Antwort) fertig Status 
Datum: 01:12 Mi 24.04.2013
Autor: Loddar

Hallo Mopsi!


> > Du hast allerdings in der Klammer nach dem ln ein
> > Plus vergessen.
>
> Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

Die letzte Klammer muss lauten [mm] $...+\left(xy^3 \ \red{+} \ 2x^2y\right)*...$ [/mm]



> [mm]\frac{\partial{f}}{\partial{y}} = (3y^2x+2x^2)ln(x^2+y^2+xy) + (xy^3+2x^2y)( \frac{2y+x}{x^2+y^2+xy})[/mm]

>

> Ist das richtig?

[daumenhoch] Das sieht gut aus!


Gruß
Loddar

Bezug
                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mi 24.04.2013
Autor: Mopsi


> Hallo Mopsi!

>
>

> > > Du hast allerdings in der Klammer nach dem ln ein
> > > Plus vergessen.
> >
> > Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

>

> Die letzte Klammer muss lauten [mm]...+\left(xy^3 \ \red{+} \ 2x^2y\right)*...[/mm]

Oh! Jetzt sehe ich es auch :-P
Danke :)
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de