www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Partielle Ableitung bestimmen
Partielle Ableitung bestimmen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:46 Di 09.09.2008
Autor: claire06

Aufgabe
x1 = [mm] \bruch{M + p_{2} - p_{1}}{2p_{1}} [/mm]

x2 = [mm] \bruch{M + p_{1} - p_{2}}{2p_{2}} [/mm]

Bewerten Sie folgende Aussagen:
Sind die Güter Komplemente?
Sind die Güter Substitue?
Gut 1 ist ein Giffen-Gut
Gut 2 ist ein superiores Gut
Gut 2 ist ein inferiores Gut

Guten Morgen liebe Matheräumler,

ich komme bei der Berechnung der Kreuzpreiselastizität nicht weiter und bitte um eure Hilfe.

[mm] E(x_{1},p_{2}) [/mm] = [mm] \bruch{dx_{1}/x_{1}}{dp_{2}/p_{2}} [/mm]

[mm] dx_{1}= \bruch{M + p_{2} - p_{1}-x_{1}}{2p_{1}}= -\bruch{1}{2p_{1}}. [/mm]

Soweit, so gut, aber woraus berechne ich denn [mm] dp_{2}? [/mm] Aus der Gleichung [mm] x_{1} [/mm] oder aus der Gleichung [mm] x_{2}? [/mm]

Aus Gleichung 1 ergäbe sich doch für [mm] dp_{2}=\bruch{1}{2p_{1}} [/mm] und aus Gleichung 2 ergäbe sich [mm] dp_{2}=-\bruch{1}{2} [/mm]

Das Ergebnis lautet für [mm] \bruch{dx_{1}}{dp_{2}}: \bruch{1}{2p_{1}}, [/mm] aber ich verstehe nicht, warum das positiv ist. Bitte bringt mich auf die richtige Spur, ich hab mich da irgendwie ziemlich verlaufen...

Viele Grüße
Claire

        
Bezug
Partielle Ableitung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Di 09.09.2008
Autor: angela.h.b.


> [mm] x_1(p_1,p_2) [/mm] = [mm]\bruch{M + p_{2} - p_{1}}{2p_{1}}[/mm]
>  
> [mm] x_2 (p_1,p_2)=[/mm]  [mm]\bruch{M + p_{1} - p_{2}}{2p_{2}}[/mm]

> ich komme bei der Berechnung der Kreuzpreiselastizität
> nicht weiter und bitte um eure Hilfe.
>  
> [mm]E(x_{1},p_{2})[/mm] = [mm]\bruch{dx_{1}/x_{1}}{dp_{2}/p_{2}}[/mm]

Hallo,

es ist hier folgendes zu berechnen:

[mm] \eta (x_1, p_2)=\bruch{\partial x_1}{\partial p_2}*\bruch{p_2}{x_1} [/mm]


[mm] \bruch{\partial x_1}{\partial p_2} [/mm] ist die partielle Ableitung von [mm] x_1 [/mm] nach [mm] p_2, [/mm] die mußt Du zuerst ausrechnen, danach mit [mm] \bruch{p_2}{x_1} [/mm] multiplizieren.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de