www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Fr 12.05.2023
Autor: Markus_Konrad_1

Aufgabe
Bilde die Ableitungen der folgenden Funktionen und interpretiere diese geometrisch.

a) $f(x,y) = 3x-2y+1$
b) $g(x,y) = [mm] x^2 +y^2$ [/mm]
c $h(x,y) = [mm] \sqrt{x^2 + y^2}$ [/mm] mit $D = [mm] \{(x,y) \in \mathbb{R}^2 |x^2 + y^2 \le 1 \}$ [/mm]

Hallo,

danke, dass ihr euch meiner Fragen annehmt!

Zu a) die partiellen Ableitungen sind natürlich denkbar einfach und die Konstanten 3 (nach x abgeleitet) und -2 (nach y abgeleitet).

Zur geometrischen Interpretation: Wenn die ersten Ableitung eine Konstante ist, dann hat die Funktion in jedem Punkt den gleichen Anstieg (in x Richtung 3 und in y Richtung -2). Das heißt f(x,y) beschreibt eine Ebene, die geneigt ist und konstanten Anstieg in x und y Richtung hat.

zu b)
Die Funktion g entspricht der Oberfläche einer nach oben geöffneten Parabel quasi? Die Ableitungen 2x bzw 2y geben an wie "steil" die Oberfläche eine horizontale Ebene ist, die die Funktion in (x,y) schneidet (für die Ableitung nach x) und das gleiche für die Ableitung nach y mit einer vertikalen Ebene?

Passt das? also stelle ich mir das quasi geoemtrisch richtig vor?

zu c)

Hier sind die Ableitungen [mm] $\frac{\partial h}{\partial x} [/mm] = [mm] \frac{x}{\sqrt{x^2+y^2}}$ [/mm]
und [mm] $\frac{\partial h}{\partial y} [/mm] = [mm] \frac{y}{\sqrt{x^2+y^2}}$ [/mm]

Die Funktion h "misst" quasi den Abstand von Punkten im und auf dem Kreis mit Radius 1 zum Ursprung. Jetzt weiß ich aber wirklich nicht so recht wie ich diese Ableitungen geometrisch interpretieren soll?

Danke vorab

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Sa 13.05.2023
Autor: HJKweseleit


> Bilde die Ableitungen der folgenden Funktionen und
> interpretiere diese geometrisch.
>
> a) [mm]f(x,y) = 3x-2y+1[/mm]
>  b) [mm]g(x,y) = x^2 +y^2[/mm]
>  c [mm]h(x,y) = \sqrt{x^2 + y^2}[/mm]
> mit [mm]D = \{(x,y) \in \mathbb{R}^2 |x^2 + y^2 \le 1 \}[/mm]
>  
> Hallo,
>
> danke, dass ihr euch meiner Fragen annehmt!
>
> Zu a) die partiellen Ableitungen sind natürlich denkbar
> einfach und die Konstanten 3 (nach x abgeleitet) und -2
> (nach y abgeleitet).
>
> Zur geometrischen Interpretation: Wenn die ersten Ableitung
> eine Konstante ist, dann hat die Funktion in jedem Punkt
> den gleichen Anstieg (in x Richtung 3 und in y Richtung
> -2). Das heißt f(x,y) beschreibt eine Ebene, die geneigt
> ist und konstanten Anstieg in x und y Richtung hat.

[ok]


>
> zu b)
> Die Funktion g entspricht der Oberfläche einer nach oben
> geöffneten Parabel quasi? Die Ableitungen 2x bzw 2y geben
> an wie "steil" die Oberfläche eine horizontale Ebene ? ist,
> die die Funktion in (x,y) schneidet (für die Ableitung
> nach x) und das gleiche für die Ableitung nach y mit einer
> vertikalen Ebene?
>  
> Passt das? also stelle ich mir das quasi geoemtrisch
> richtig vor?
>

Besser: Es ist der Rand eines nach oben geöffneten parabolischen Rotationskörpers ("Sektglaskelch").

Wieso?

Stell dir vor, du bist auf einer konstanten "Höhe" g(x)=25 und betrachtest alle (x|y), die diesen Wert ergeben:

[mm] 25=x^2+y^2. [/mm]

Das ist die Gleichung eines Kreises mit dem Radius 5. Alle (x|y), die auf diesem Kreis um den Ursprung liegen, erzeugen den "Höhenwert" z=25. Gehst du höher, so wird aus 25 z.B. 49, und in dieser Höhe ist der Radius auf 7 angewachsen. Alle Schnitte parallel zur x-y-Ebene geben also Kreise um die z-Achse, die mit steigender Höhe wachsen (r = Wurzel aus der Höhe). Die partielle Ableitung gibt die Steigung am Rand des "Sektglaskelches" an.

> zu c)
>
> Hier sind die Ableitungen [mm]\frac{\partial h}{\partial x} = \frac{x}{\sqrt{x^2+y^2}}[/mm]
>  
> und [mm]\frac{\partial h}{\partial y} = \frac{y}{\sqrt{x^2+y^2}}[/mm]
>  
> Die Funktion h "misst" quasi den Abstand von Punkten im und
> auf dem Kreis mit Radius 1 zum Ursprung. Jetzt weiß ich
> aber wirklich nicht so recht wie ich diese Ableitungen
> geometrisch interpretieren soll?

Kreise in einer festen Höhe, wie b), aber jetzt bist du bei der Höhe woanders. Beim Kreis mit Radius 5 ist auch die Höhe 5, beim Kreis mit Radius 6 auch die Höhe usw.. Du erhältst einen nach oben offenen Kegelmantel mit Spitze im Ursprung. Die partielle Ableitung z.B. nach x gibt an, wie steil du am Mantel hochkommst, wenn du nur ein Stückchen in x-Richtung gehst. Direkt über der x-Achse wird y=0, und die Steigung wird 1 (bzw. -1 im negativen x-Bereich).

>  
> Danke vorab
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de