www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 16.07.2014
Autor: NoJoke

Hallo,

es geht wieder um einen partiellen Integration.

[mm] \integral {\bruch{ln(x)}{x} dx} [/mm]

  u= ln(x)  [mm] u´=\bruch{1}{x} [/mm]
  v´= [mm] \bruch{1}{x} [/mm]     v= ln(x)

=u*v - [mm] \integral{u' * v dx} [/mm]

= ln(x)*ln(x) - [mm] \integral{\bruch{1}{x} * ln(x) dx} [/mm]
[mm] =ln^{2}(x) [/mm] - ln(x)*x(ln(x)-1)
wie kann ich das am Ende zusammenfassen? Oder muss ich das überhaupt zusammenfassen ? danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mi 16.07.2014
Autor: rmix22

Hallo!

> Hallo,
>  
> es geht wieder um einen partiellen Integration.
>  
> [mm]\integral {\bruch{ln(x)}{x} dx}[/mm]
>  
> u= ln(x)  [mm]u´=\bruch{1}{x}[/mm]
>    v´= [mm]\bruch{1}{x}[/mm]     v= ln(x)
>  
> =u*v - [mm]\integral{u' * v dx}[/mm]
>  
> = ln(x)*ln(x) - [mm]\integral{\bruch{1}{x} * ln(x) dx}[/mm]

Bis jetzt ist es [ok]
  

> [mm]=ln^{2}(x)[/mm] - ln(x)*x(ln(x)-1)

Und was soll das hier darstellen. Hast du jetzt locker aus der Hüfte das verbleibende Integral (falsch) gelöst?

Fällt dir nicht auf, dass das verbleibende Integral genau jenes aus der Angabe ist? Nennen wir das gesuchte Integral der Einfachheit halber $I$. Dann hast du bisher berechnet:

     [mm] $\underline{I}=\integral {\bruch{ln(x)}{x} dx}=\ldots=ln(x)*ln(x)-\integral{\bruch{1}{x} * ln(x) dx}=\underline{ln^2{x}-I}$ [/mm]
Der unterstrichene Teil stell eine Gleichung dar, die wir nach I, also dem gesuchten Integral, leicht auflösen können und wir erhalten
     [mm] $I=\frac{1}{2}*ln^2{x}$ [/mm]
und sind fertig.

Das Beispiel lässt sich übrigens leichter mit Substitution [mm] $(u=ln\;x)$ [/mm] lösen.
Oder du kennst die "Regel" [mm] $\integral{f(g(x))*g'(x)}dx=F(g(x))$ [/mm] (das ist quasi die Umkehrung der Kettenregel beim Ableiten) und ersparst dir dabei das explizite Anschreiben der Substitution. $F$ ist dabei eine Stammfunktion von $f$.
Also
     [mm] $\integral{(ln\;x)^1*\frac{1}{x}}dx=\ldots$ [/mm]
man sieht bei dieser Schreibweise deutlich, dass die Ableitung der "inneren" Funktion [mm] $(ln\;x)$ [/mm] als Faktor daneben steht und man daher nur mehr die "äußere" Funktion $(\ [mm] ()^1\ [/mm] )$ integrieren muss:
     [mm] $\ldots=\frac{(ln\;x)^2}{2}+C$. [/mm]

Gruß RMix




Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mi 16.07.2014
Autor: NoJoke

Entschuldigung  dass ich so spät antworte..
und wie soll ich dann [mm] \integral{ \bruch{1}{x}* ln(x) dx} [/mm]
lösen ist ja wieder ein Produkt?

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 16.07.2014
Autor: schachuzipus

Hallo,

> Entschuldigung dass ich so spät antworte..
> und wie soll ich dann [mm]\integral{ \bruch{1}{x}* ln(x) dx}[/mm]
> lösen ist ja wieder ein Produkt?

Nein, stelle die erhaltene Gleichung nach dem Integral um und teile durch den Vorfaktor ....

Gem. meinem Vorredner ist

[mm]\red{\int{\frac{\ln(x)}{x} \ dx}} \ = \ \ln^2(x) \ - \red{\int{\frac{\ln(x)}{x} \ dx}}[/mm]

Rechne also auf beiden Seiten [mm]+\red{\int{\frac{\ln(x)}{x} \ dx}}[/mm] und löse dann nach dem Integral auf ...

Gruß

schachuzipus

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Mi 16.07.2014
Autor: rmix22


> Entschuldigung  dass ich so spät antworte..
>  und wie soll ich dann [mm]\integral{ \bruch{1}{x}* ln(x) dx}[/mm]
> lösen ist ja wieder ein Produkt?  

Ich hatte ja schon Bedenken, dass ich zu viel vorgerechnet und dich damit um die Chance, dich selbst auch einzubringen gebracht hätte.

Also wie es scheint hast du wirklich noch nicht bemerkt, dass diese "neue" sich ergebende Integral gar nicht so neu ist und ja genau das Integral ist, dass in der Angabe steht und das du berechnen möchtest! Du kommst also auf eine Gleichung in dem gesuchten Integral, welche du leicht lösen kannst. Hast du das beim Lesen meiner Antwort überlesen?

Es gilt ja wohl
     [mm]\integral{ \bruch{1}{x}* ln(x) dx}=\integral{ \bruch{ln(x)}{x}dx}[/mm]



Bezug
        
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Mi 16.07.2014
Autor: NoJoke

Ich soll das mittels partieller Integration machen steht konkret in der Aufgabe deswegen habe ich es so gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de