www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Mo 05.01.2009
Autor: Englein89

Hallo,

ich habe hier ein Beispiel zur partiellen Integration und verstehe nicht ganz, wieso die partielle Integration hier mehrfach ausgeführt werden soll.

[mm] \integral sin(x)*x^2 [/mm] dx

Durch partielle Integration ergibt sich

[mm] \integral [/mm] sin(x) * [mm] x^2 [/mm] dx = -cos(x) * [mm] x^2 [/mm] - [mm] \integral [/mm] (-cos(x) * 2x) dx

Frage: Was passiert mit dem Ausdruck links, also vor dem Gleichheitszeichen? Und was muss ich jetzt noch machen und warum?

Gibt es eine Faustregel, wann ich in der Regel diese und wann ich die Substitutionsmethode nutze?

        
Bezug
Partielle Integration: nochmals partielle Integration
Status: (Antwort) fertig Status 
Datum: 22:38 Mo 05.01.2009
Autor: Loddar

Hallo Englein!


> [mm]\integral sin(x)*x^2[/mm] dx
>  
> Durch partielle Integration ergibt sich
>  
> [mm]\integral[/mm] sin(x) * [mm]x^2[/mm] dx = -cos(x) * [mm]x^2[/mm] - [mm]\integral[/mm] (-cos(x) * 2x) dx
>  
> Frage: Was passiert mit dem Ausdruck links, also vor dem
> Gleichheitszeichen?

Nichts ... das ist ja das zu lösende Integral.


> Und was muss ich jetzt noch machen und warum?

Nun musst Du auf der rechten Seite der Gleichung das Integralzeichen entfernen, indem Du für [mm] $-\integral{-2x*\cos(x) \ dx} [/mm] \ = \ [mm] +2*\integral{x*\cos(x) \ dx}$ [/mm] nochmals die partielle Integration anwendest.

  

> Gibt es eine Faustregel, wann ich in der Regel diese und
> wann ich die Substitutionsmethode nutze?

Zum eine´n ist es Übung. Zum anderen verwendet man die Subsitutionsmtehode, wenn die Ableitung einer Teilfunktion im Integral auftaucht.

Bei Anwendung der partiellen Integration sollte sich das neu entstehende Integral vereinfachen im Vergleich zum Ausgangsintegral.


Gruß
Loddar


Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:47 Di 06.01.2009
Autor: Englein89


> Nun musst Du auf der rechten Seite der Gleichung das
> Integralzeichen entfernen, indem Du für
> [mm]-\integral{-2x*\cos(x) \ dx} \ = \ +2*\integral{x*\cos(x) \ dx}[/mm]
> nochmals die partielle Integration anwendest.

Wie kommst du auf diesen Ausdruck und was ist der Grund, weshalb ich nochmal partiell integrieren muss?

Bezug
                        
Bezug
Partielle Integration: aus Deinem Post
Status: (Antwort) fertig Status 
Datum: 08:53 Di 06.01.2009
Autor: Loddar

Hallo Englein!


> Wie kommst du auf diesen Ausdruck

Diesen Ausdruck habe ich 1:1 aus Deinem eigenen Post entnommen. Von daher musst Du ja wissen, wie er entstanden ist.


> und was ist der Grund, weshalb ich nochmal partiell integrieren muss?

Salopp: weil es keine andere Möglichkeit gibt (es sei denn, Du willst über die Reihendarstellung des [mm] $\cos(x)$ [/mm] gehen).
Denn im nächsten Schritt der partiellen Integration ensteht ein Integral ohne den Faktor $x_$ . Diese Integral lässt sich dann schnell bestimmen.


Gruß
Loddar


Bezug
                                
Bezug
Partielle Integration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:57 Di 06.01.2009
Autor: Englein89

Der gleiche ist es doch nicht, es sei denn, du hast was umgestellt. Ich sehe gerade aber nicht wo und warum.

Den Grund für die 2. Integration habe ich immernoch nicht verstanden, tut mir leid :( Ich beherrsche die Methode noch nicht.

Bezug
                                        
Bezug
Partielle Integration: konstanter Faktor
Status: (Antwort) fertig Status 
Datum: 09:01 Di 06.01.2009
Autor: Loddar

Hallo Englein!


$$ [mm] \red{-\integral{-2x\cdot{}\cos(x) \ dx}} [/mm] \ = \ [mm] +2\cdot{}\integral{x\cdot{}\cos(x) \ dx} [/mm] $$
Das Rote ist exakt aus Deinem Post entnommen (als separater Term, da fehlt ja noch etwas davor). Ich habe dann lediglich den konstanten Faktor $-2$_ vor das Integral gezogen.


> Den Grund für die 2. Integration habe ich immernoch nicht
> verstanden, tut mir leid :( Ich beherrsche die Methode noch
> nicht.

Ich befürchte, wir reden etwas aneinander vorbei ... Vielleicht solltest Du mal Dein Frage präzisieren.


Gruß
Loddar


Bezug
                                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Do 08.01.2009
Autor: Englein89

Vielleicht war die Aufgabe doch etwas zu schwer.

Ich nehme mal das Folgende Beispiel:

Integral von sin(x)*sin(x)dx

ich setze v=sin(x) und v'=cos(x)
u'=sin(x) und u=-cos(x)

Damit habe ich

[mm] \integral [/mm] sin²(x)dx=-sin(x)*cos(x)+ [mm] \integral [/mm] cos(x)*cos(x)

Was geschieht nun mit cos²(x)? Ich weiß zwar die Stammfunktion zu cos(x) aber nicht zu cos²(x).. ist das sin²(x)?

Wie mache ich nun weiter?

Bezug
                                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Do 08.01.2009
Autor: MathePower

Hallo Englein89,

> Vielleicht war die Aufgabe doch etwas zu schwer.
>  
> Ich nehme mal das Folgende Beispiel:
>  
> Integral von sin(x)*sin(x)dx
>  
> ich setze v=sin(x) und v'=cos(x)
>  u'=sin(x) und u=-cos(x)
>  
> Damit habe ich
>  
> [mm]\integral[/mm] sin²(x)dx=-sin(x)*cos(x)+ [mm]\integral[/mm]
> cos(x)*cos(x)
>  
> Was geschieht nun mit cos²(x)? Ich weiß zwar die
> Stammfunktion zu cos(x) aber nicht zu cos²(x).. ist das
> sin²(x)?
>  
> Wie mache ich nun weiter?


Ersetze [mm]\cos^{2}\left(x\right)[/mm] gemäß des trigonometrischen Pythagoras:

[mm]\sin^{2}\left(x\right)+\cos^{2}\left(x\right)=1[/mm]


Gruß
MathePower

Bezug
                                                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Do 08.01.2009
Autor: Englein89

Ich habe noch nie etwas von dieser Umformung gehört. Gibt es keine andere Möglichkeit?

Bezug
                                                                        
Bezug
Partielle Integration: trigonometrischer Pythagoras
Status: (Antwort) fertig Status 
Datum: 18:11 Do 08.01.2009
Autor: Loddar

Hallo Englein!


> Ich habe noch nie etwas von dieser Umformung gehört.

Das solltest Du aber, denn diese Gleichheit verwndet man öfters.


> Gibt es keine andere Möglichkeit?

Nö.


Gruß
Loddar


Bezug
                                                                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Do 08.01.2009
Autor: Englein89

Wir haben nämlich einfach nur geschrieben, dass [mm] cos(x)^2 [/mm] als Stammfunktion [mm] 1-sin^2(x) [/mm] hat. Das hat mich verwirrt.

Ich habe hier noch ein Beispiel, wo ich einfach nicht auf den richtigen Weg komme:

[mm] \integral e^x [/mm] *sin(x)

Ich habe:

[mm] e^x [/mm] als f bezeichnet und sin(x) als g'

also:

[mm] \integral e^x [/mm] *sin(x) = [mm] e^x [/mm] * (-cos x) - [mm] \integral e^x [/mm] * (-cos x)

nun also 2. Integration:

- [mm] \integral e^x [/mm] * (-cos x)= [mm] -e^x [/mm] (?)*(-cos x) [mm] \integral e^x [/mm] * - sin(x)

Aber damit habe ich ja nichts vereinfacht. Rechenfehler oder falsche Bennennung der einzelnen Terme?

Bezug
                                                                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Do 08.01.2009
Autor: MathePower

Hallo Englein89,

> Wir haben nämlich einfach nur geschrieben, dass [mm]cos(x)^2[/mm]
> als Stammfunktion [mm]1-sin^2(x)[/mm] hat. Das hat mich verwirrt.
>  
> Ich habe hier noch ein Beispiel, wo ich einfach nicht auf
> den richtigen Weg komme:
>  
> [mm]\integral e^x[/mm] *sin(x)
>  
> Ich habe:
>  
> [mm]e^x[/mm] als f bezeichnet und sin(x) als g'
>  
> also:
>  
> [mm]\integral e^x[/mm] *sin(x) = [mm]e^x[/mm] * (-cos x) - [mm]\integral e^x[/mm] *
> (-cos x)
>  
> nun also 2. Integration:
>  
> - [mm]\integral e^x[/mm] * (-cos x)= [mm]-e^x[/mm] (?)*(-cos x) [mm]\integral e^x[/mm]
> * - sin(x)


Hier hast Du [mm]g'=e^{x}[/mm] und [mm]f\left(x\right)=\cos\left(x\right)[/mm],
was sich natürlich mit der ersten Integration aufhebt.

Demnach mußt Du hier [mm]f\left(x\right)=e^{x}[/mm] und [mm]g'\left(x\right)=\cos\left(x\right)[/mm] wählen.

Damit kommst Du ans Ziel.


>  
> Aber damit habe ich ja nichts vereinfacht. Rechenfehler
> oder falsche Bennennung der einzelnen Terme?


Gruß
MathePower

Bezug
                                                                                                
Bezug
Partielle Integration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:10 Sa 10.01.2009
Autor: Englein89

Hallo,

also ich habe jetzt hin und hergerechnet, aber ich komme einfach auf kein Ergebnis. War denn meine erste Integration richtig? Könnte mir jemand zeigen, wie ich nun weitermache und auf ein Ergebnis komme? :(


Ich habe mich auch nochmal an diese Aufgabe begeben:

[mm] \integral [/mm] x* e hoch [mm] (-x^2/2) [/mm]

Ich habe x=g' gesetzt und die e-FUnktion als f, aber ich bekomme dann so etwas

[mm] \integral [/mm] x* e hoch [mm] (-x^2/2)= [/mm] e hoch [mm] (-x^2/2) *0,5x^2 [/mm] - [mm] \integral [/mm] 0,5e hoch [mm] (-x^2/2)*x*(-\bruch{-x^2 +4x}{4} [/mm]

Irgendwie wird darauf bei mir immer nur etwas ganz Schlimmes :(

Bezug
                                                                                                        
Bezug
Partielle Integration: welches Integral denn nun?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Sa 10.01.2009
Autor: reverend

Hallo Englein,

ich bin etwas verwirrt, nachdem ich alle Beiträge gelesen habe.
Inzwischen sind drei verschiedene Aufgaben in Umlauf.
Zu welcher willst Du denn nun den Lösungsweg wissen?

Ich schreibe mal eine Antwort zu [mm] x^2\sin{x}, [/mm] vielleicht hilft das weiter. Wenn nicht, sag Bescheid.

lg,
reverend

Bezug
                                                                                                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 10.01.2009
Autor: Englein89

Ich meine das letzte Beispiel: [mm] e^x [/mm] *sin x

Bezug
                                                                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Sa 10.01.2009
Autor: reverend


> [mm]\integral e^x[/mm] *sin(x)
>  

  
[mm] \integral{e^x\sin{x} dx}=e^x*(-\cos{x})-\integral{e^x*(-\cos{x}) dx}=\red{-e^x\cos{x}+\integral{e^x\cos{x} dx}} [/mm]

...hattest Du richtig heraus. Die rote Umformung habe ich noch dazu gesetzt.
  

> nun also 2. Integration:
>  
> - [mm]\integral e^x[/mm] * (-cos x)= [mm]-e^x[/mm] (?)*(-cos x) [mm]\integral e^x[/mm]
> * - sin(x)

Ich würde, nur zur Fehlervermeidung, folgendes behandeln:

[mm] \red{\integral{e^x\cos{x} dx}}=e^x\sin{x}-\integral{e^x\sin{x} dx} [/mm]

> Aber damit habe ich ja nichts vereinfacht. Rechenfehler
> oder falsche Bennennung der einzelnen Terme?

Das setzt Du jetzt oben ein und erhältst:

[mm] \integral{e^x\sin{x} dx}=-e^x\cos{x}+e^x\sin{x}-\integral{e^x\sin{x} dx} [/mm]

Durch einfache Umformungen bekommst Du dann:

[mm] \integral{e^x\sin{x} dx}=\bruch{1}{2}e^x(\sin{x}-\cos{x}) [/mm]

lg,
reverend

Bezug
                                                                                                
Bezug
Partielle Integration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:02 Sa 10.01.2009
Autor: Englein89

Warum wird es bei mir denn immer so kompliziert? Irgendwie komme ich mit den Umformungen noch nicht so klar.

Wie kommst du denn am Ende auf 1/2? Ich sehe nicht ganz, wie du am ENde umgeformt hast.

Aber danke für die Mühe, die Aufgabe habe ich jetzt verstanden!

Bezug
                                                                                                        
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Sa 10.01.2009
Autor: Englein89

Hat sich erledigt. Danke! Habs verstanden!

Bezug
                                                                                                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Sa 10.01.2009
Autor: reverend

Freut mich.
Du behandelst das ganze Integral einfach wie eine Variable.
Integral=Term-Integral kann man umformen zu
2*Integral=Term, Integral= [mm] \bruch{1}{2} [/mm] Term.

ciao,
rev

Bezug
                                                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Sa 10.01.2009
Autor: Englein89

Ok.

Da ich das Integral con [mm] cos(x)^2 [/mm] dx bilden soll, mache ich also Folgendes?

[mm] cos^2(x)=1-sin^2(x) [/mm]

Aber das gibt mir ja immernoch nicht das Integral von [mm] sin^2(x). [/mm] Irgendwie drehe ich mich doch dann im Kreise, oder?

Bezug
                                                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Sa 10.01.2009
Autor: reverend

Ja, aber Du kommst einen Schritt weiter wieder am Anfang des Kreises an und hast neue Erkenntnisse gewonnen. Die kannst Du dann einsetzen, siehe meine letzten beiden Beispiele (besonders die Lösung zu [mm] e^x\sin{x} [/mm] ).

Bezug
        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 10.01.2009
Autor: reverend


> [mm] \integral{sin(x)*x^2 dx} [/mm]
>  
> Durch partielle Integration ergibt sich
>  
> [mm] \integral{sin(x)*x^2 dx}=-cos(x)*x^2-\integral{(-cos(x)*2x) dx} [/mm]

Loddar hat dann umgeformt zu [mm] =-cos(x)*x^2+2\integral{(cos(x)*x) dx} [/mm]

Übrigens ist Deine Schreibweise fehleranfällig. Besser ist, von vornherein [mm] x^2\sin{x} [/mm] zu schreiben. So kommt man nicht in Versuchung, den Faktor [mm] x^2 [/mm] mit ins Argument des Sinus hineinzuziehen. Das passiert sonst schnell mal.

Das Integral auf der rechten Seite ist noch offen und soll weiter mit partieller Integration bearbeitet werden.

[mm] \integral{x*\cos{x} dx}=x*\sin{x}-\integral{1*(\sin{x}) dx}=x\sin{x}+\cos{x} [/mm]

Das jetzt oben eingesetzt ergibt:
[mm] \integral{x^2\sin{x} dx}=-x^2\cos{x}+2\integral{x\cos{x} dx}=-x^2\cos{x}+2*(x\sin{x}+\cos{x})=2x\sin{x}-(x^2-2)\cos{x} [/mm]

Klarer?

lg,
reverend

Bezug
                
Bezug
Partielle Integration: Schließung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 Sa 10.01.2009
Autor: Englein89

Hallo,
kann dieser Thread bitte als beantwortet angesehen werden? Es stellt sich mir hier noch eine Frage, aber die werde ich einfach separat posten, da es sonst in einem Chaos endet.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de