www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Partikuläre Lösung gesucht
Partikuläre Lösung gesucht < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partikuläre Lösung gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Do 07.02.2013
Autor: Chelydrae

Aufgabe
Man finde die allgemeine Lösung der Differentialgleichung

y''''' - y' = 1

Hi :)

Ich bereite mich gerade auf die ETH Basisprüfung vor und versuche nun das Thema Differentialgleichungen für mich abzuschließen. Dabei stoße ich immer wieder auf das Problem, dass ich zwar leicht auf die homogene Lösung komme - Jedoch stets Probleme mit der partikulären Lösung habe!

Ich habe mir gedacht, vielleicht kann hier ein Experte etwas unterstützend einwirken, indem er/sie exemplarisch die partikuläre Lösung zur oben genannten Aufgabe zeigt - wobei mir insbesondere der Rechenweg wichtig ist!

Und wenn jemand einen Insidertipp hat, wo ich im Netz eine empfehlenswerte Homepage zum Thema partikuläre Lösung finden kann... auf welche Art ich jeweils eine partikuläre Lösung finden kann...

...Überragend :D

--------------------------------------------------------

Weil hier ausdrücklich eine Lösungsansatz erwünscht ist kann ich hier mal die homogene Lösung aufzeigen:

[mm] a^{5} [/mm] - a = 0

a * ( [mm] a^{4} [/mm] - 1 ) = 0     ->a1 = 0 ; a2 = 1 ; a3 = -1 ; a4 = i ; a5 = -i

yh = A + B [mm] e^{x} [/mm] + C [mm] e^{-x} [/mm] + D * sin (x) + E * cos (x)

yp = ??? :)

y = yh + yp


        
Bezug
Partikuläre Lösung gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Fr 08.02.2013
Autor: leduart

Hallo
wenn die rechte Seite nicht schon wie hier vorkommt, dann A*rechte Seite, jetzt ist der Ansaatz A*x*rechte seite
also [mm] y_p=A*x [/mm] einsetzen und A bestimmen (A=1)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de