www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Periodizität
Periodizität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periodizität: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:36 So 08.02.2015
Autor: Madila

Aufgabe
Ist diese Funktion periodisch oder nicht? Wenn ja: Nennen Sie T!

a) [mm] x(n)=(-1)^{0,5n+2\pi} [/mm]
b) x(t) = [mm] \summe_{i= - \infty}^{\infty} si(5\pi t-nt_{0}) [/mm]

Hallo!

Ich lerne gerade für das Fach Signale und Systeme und soll eigentlich nur die Periodizität bestimmen.
Ich bin mir bei diesen beiden Funktionen allerdings nicht ganz sicher!

Zu a) an sich kann man bei diesem Funktionstyp ja immer [mm] e^{j\pi} [/mm] ansetzen. Würde das [mm] +2\pi [/mm] nun nicht in diesem Exponenten stehen, so würde ich zunächst auf ein [mm] w=0,5\pi [/mm] kommen und damit dann auf T= 4 kommen. Mich irritiert nun aber das [mm] +2\pi. [/mm] Zerstört das die Periodizität? Oder kann ich die [mm] +2\pi [/mm] einfach zu dem w addieren?

Zu b) an sich ist eine si-Funktion ja keine periodische Funktion, weil [mm] si(5\pit)= \bruch{sin(5\pi t)}{5\pi t} [/mm] und hier im Nenner ja eine Gerade steht. Ist diese Funktion nun aber eine periodische Funktion, weil sie sich durch die Summe ständig wiederholt? Wäre die Periodendauer hier nun also [mm] T=t_{0}? [/mm]

Ich würde mich über jeden Tipp sehr freuen!

Lieben Grüß
Madila

        
Bezug
Periodizität: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 08.02.2015
Autor: chrisno


> .....
> Zu a) an sich kann man bei diesem Funktionstyp ja immer
> [mm]e^{j\pi}[/mm] ansetzen.

Mach das, dann sehen wir weiter.

> Würde das [mm]+2\pi[/mm] nun nicht in diesem
> Exponenten stehen, so würde ich zunächst auf ein [mm]w=0,5\pi[/mm]
> kommen und damit dann auf T= 4 kommen.

Da erhalte ich etwas anderes

> Mich irritiert nun
> aber das [mm]+2\pi.[/mm] Zerstört das die Periodizität? Oder kann
> ich die [mm]+2\pi[/mm] einfach zu dem w addieren?

Weder noch. Befasse Dich mit dem Begriff der Phase bei dieser Darstellung einer komplexen Zahl.

>  
> Zu b) an sich ist eine si-Funktion ja keine periodische
> Funktion, weil [mm]si(5\pit)= \bruch{sin(5\pi t)}{5\pi t}[/mm] und
> hier im Nenner ja eine Gerade steht. Ist diese Funktion nun
> aber eine periodische Funktion, weil sie sich durch die
> Summe ständig wiederholt? Wäre die Periodendauer hier nun
> also [mm]T=t_{0}?[/mm]

Zuerst einmal vermute ich einen Tippfehler in der Funktion. Der Summationsindex i kommt unter dem Summenzeichen nicht vor. Als nächstes sieht das sehr nach einer Fourier-Transformation aus. Genau so etwas finde ich dann auch bei Wikipedia, wenn ich nach si-Funktion suche.
Vielleicht findest Du da etwas in Deinen Unterlagen?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de