www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Permutation: Transposition
Permutation: Transposition < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Transposition: Frage zu Transpositionen
Status: (Frage) beantwortet Status 
Datum: 20:47 Mi 31.01.2007
Autor: uhu_84

Aufgabe
Sei [mm] x_{1} [/mm] Permutation von {1, 2, 3, 4, 5, 6} gegeben durch

[mm] x_{1} [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm]

Stelle die Permutation als Produkt von Transposition dar?

Hallo miteinander

Ich habe eine Frage zu den Transpositionen. Ich habe folgendes aufgeschrieben:

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 5 & 6 } \pmat{ 2 & 5 }\pmat{ 3 & 4 } [/mm]

Korrigiert wurde:
[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 2 & 5 } \pmat{ 5 & 6 }\pmat{ 3 & 4 } [/mm]

Jetzt: ist die Reihenfolge bei den Transpositionen eindeutig?

Falls dem so ist, kann mir jemand bitte erklaeren, wieso die Korrektur richtig ist und meine Version falsch und wie ich die richtige Reihenfolge der einzelnen Transpositionen bekommen wuerde?

Uebrigens: Wäre das hier auch korrekt?

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 6 & 5 } \pmat{ 5 & 2 }\pmat{ 4 & 3 } [/mm]

und das hier, ist das auch eine korrekte Transposition?

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 5 & 6 } \pmat{ 5 & 2 }\pmat{ 3 & 4 } [/mm]

Ich bin der Meinung, dass alle Moeglichkeiten korrekt sind. Oder liege ich da vollkommen falsch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Permutation: Transposition: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 31.01.2007
Autor: Walde

Hi Uhu,

> Sei [mm]x_{1}[/mm] Permutation von {1, 2, 3, 4, 5, 6} gegeben durch
>
> [mm]x_{1}[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm]
>  
> Stelle die Permutation als Produkt von Transposition dar?
>  Hallo miteinander
>  
> Ich habe eine Frage zu den Transpositionen. Ich habe
> folgendes aufgeschrieben:
>  
> [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 5 & 6 } \pmat{ 2 & 5 }\pmat{ 3 & 4 }[/mm]
>  
> Korrigiert wurde:
>  [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 2 & 5 } \pmat{ 5 & 6 }\pmat{ 3 & 4 }[/mm]
>  
> Jetzt: ist die Reihenfolge bei den Transpositionen
> eindeutig?

Eigentlich nein.Es ist egal, ob es heisst
[mm] \pmat{ 2 & 5 }\pmat{ 5 & 6 }\pmat{ 3 & 4 } [/mm] oder
[mm] \pmat{ 3 & 4 }\pmat{ 2 & 5 }\pmat{5 & 6 } [/mm] oder
[mm] \pmat{ 2 & 5 }\pmat{ 3 & 4 }\pmat{ 5 & 6 } [/mm]

Das liegt daran, dass [mm] \pmat{ 3 & 4 } [/mm] zu den anderen Transpositionen Elementfremd sind, quasi einem anderen Zyklus angehören. Innerhalb eines Zyklus, ist die Reihenfolge wichtig, wobei z.B. [mm] \pmat{ 3 & 4 } [/mm] und [mm] \pmat{ 4 & 3 } [/mm] natürlich dasselbe sind.



>  
> Falls dem so ist, kann mir jemand bitte erklaeren, wieso
> die Korrektur richtig ist und meine Version falsch und wie
> ich die richtige Reihenfolge der einzelnen Transpositionen
> bekommen wuerde?

Du nimmst eine Zahl und gehst von RECHTS NACH LINKS deine Transpositionen durch und schaust für jede Klammer einmal, auf was sie abbildet.Wenn die Zahl durch Abbildung verändert wurde, musst du im Weiteren mit der verändert Zahl kucken,ob sie weiterabgebildet wird. Klingt kompliziert, aber zwei Beispiele machen es (hoffentlich deutlich):

Beispiel mit 2:

Bei [mm] \pmat{ 3 & 4 } [/mm] passiert nichts mit der 2
bei [mm] \pmat{ 5 & 6 } [/mm] passiert nichts mit der 2
bei [mm] \pmat{ 2 & 5 } [/mm] wird die 2 auf 5 abgebildet (so soll es auch sein)

beispiel mit 6

Bei [mm] \pmat{ 3 & 4 } [/mm] passiert nichts mit der 6
bei [mm] \pmat{ 5 & 6 } [/mm] wird die 6 auf 5 abgebildet, von jetzt ab, musst du für die 5 kucken!
bei [mm] \pmat{ 2 & 5 } [/mm] wird die 5 auf 2 abgebildet

also insgesamt die 6 auf die 2 und so steht es auch in der Permutation.





>  
> Uebrigens: Wäre das hier auch korrekt?
>
> [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 6 & 5 } \pmat{ 5 & 2 }\pmat{ 4 & 3 }[/mm]
>  
> und das hier, ist das auch eine korrekte Transposition?
>  
> [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 5 & 6 } \pmat{ 5 & 2 }\pmat{ 3 & 4 }[/mm]
>  
> Ich bin der Meinung, dass alle Moeglichkeiten korrekt sind.
> Oder liege ich da vollkommen falsch?

Ja du liegst falsch,beide sind nicht richtig (siehe oben)

Jetzt verstanden wie man die Transpositionen liest?

L G walde

Bezug
                
Bezug
Permutation: Transposition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Mi 31.01.2007
Autor: uhu_84

Herzlichen Dank, jetzt ist mir alles klar. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de