www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Permutationen
Permutationen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Disj. Zyklen, Transpositionen
Status: (Frage) beantwortet Status 
Datum: 22:44 Mo 23.01.2006
Autor: Edmond

Aufgabe
Es sei eine Permutation  [mm] \pi [/mm] von {1,2,3,4,5,6} gegeben durch:

[mm] \pi [/mm] =  [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6\\ 1 & 5 & 4 & 3 & 6 & 2 } [/mm]

Zu zeigen:

Geben Sie für jede dieser Permutationen eine Darstellung als Produkt paarweise disjunkter Zyklen sowie als Produkt von Transpositionen an.

#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

dies ist nur eine Teilaufgabe. Ich wäre froh über eine Lösung von dieser Teilaufgabe mit Anleitung, wie man disjunkte Zyklen und Transpositionen erhält, damit ich weiss, wie man dies bei den anderen Teilaufgaben berechnet.

Danke im Vorfeld.

        
Bezug
Permutationen: Anfang
Status: (Antwort) fertig Status 
Datum: 23:23 Mo 23.01.2006
Autor: leduart

Hallo Edmond
> Es sei eine Permutation  [mm]\pi[/mm] von {1,2,3,4,5,6} gegeben
> durch:
>  
> [mm]\pi[/mm] =  [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6\\ 1 & 5 & 4 & 3 & 6 & 2 }[/mm]
>  
> Zu zeigen:
>  
> Geben Sie für jede dieser Permutationen eine Darstellung
> als Produkt paarweise disjunkter Zyklen sowie als Produkt
> von Transpositionen an.

suchen wir erst mal die zyklen  2mit 5, 5mit 6, 6mit2 aha zykel zu Ende also
[mm] \sigma1=(2 [/mm] 5 6)
nächster 3mit 4, 4mit 3 zykel zu Ende also [mm] \sigma2=(3 [/mm] 4)
[mm] $\pi=\sigma1*\sigma2$ [/mm]
Die Transpositionen fangen an mit [mm] \tau1=(2 [/mm] 5) [mm] ;\tau2=(5 [/mm] 6) usw, die kann man direkt oben abschreiben,
Ich hoffe das reicht dir.
Gruss leduart

Bezug
                
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Mo 23.01.2006
Autor: Edmond

Ok, ich habe die disjunkten Zyklen wohl verstanden. jedoch weiss ich nicht genau was eine Transposition ist. In meinem Skript heisst es, die vertauschung von i und j.. kann aber leider nicht viel damit anfangen, darum weiss ich auch nicht recht, wie ich die Transposition ablesen soll/kann von der Permutation [mm] \pi [/mm] .

danke

Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mo 23.01.2006
Autor: leduart

Hallo Edmond
Transpositionen sind Vertauschungen Element Nr i mit Element nr j oder wenn man von Plätzen redet i nimmt den Platz von hier also 5 den von 2, usw
Gruss leduart

Bezug
                                
Bezug
Permutationen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:49 Mo 23.01.2006
Autor: Edmond

Wow, das ging ja schnell!!! Vielen Dank!!!

Gruss Edmond

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de