www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Permutationen
Permutationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Zyklen,Signaturen
Status: (Frage) beantwortet Status 
Datum: 16:41 So 01.05.2005
Autor: Reaper

Hallo bin grade beim Thema Permutationen und hab da ein paar Fragen:
1.Frage:
Zyklen der Länge 2 nennt man Transpositionen. Ist r = [mm] (i_{1},i_{2}) [/mm] eine
Transposition, so gilt [mm] r^{-1} [/mm] = t, also r o r = id.
Was ich mich jetzt frag was [mm] r^{-1} [/mm] = t bedeutet zumahl wir ja t vorher nie erwänd haben. Also eine Transposition wäre z.b.:  [mm] \pmat{ 2 & 3 \\ 3 & 2 } [/mm]
Wenn ich die jetzt invertiere kommen Bruchkommazahlen heraus, was es wohl
nicht ganz sein kann...
2.Frage:
Für  [mm] \pi \in S_{n} [/mm] ist [mm] sign(\pi [/mm] ) =  [mm] \produkt_{1 <= i < j <= n} \bruch{\pi(j) - \pi(i)}{j-i} [/mm]

Ich weiß dass das direkte Produkt darstellt kann aber irgendwie trotzdem nicht mit der Formel umgehen.
Wie rechnet man sich beispielsweise füt [mm] \pi [/mm] =  [mm] \pmat{ 2 & 3 & 1 \\ 3 & 2 & 1 } [/mm] die Signatur mithilfe der obigen gennanten Formel aus?

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 So 01.05.2005
Autor: Stefan

Hallo Reaper!

>  1.Frage:
>  Zyklen der Länge 2 nennt man Transpositionen. Ist r =
> [mm](i_{1},i_{2})[/mm] eine
> Transposition, so gilt [mm]r^{-1}[/mm] = t, also r o r = id.
>  Was ich mich jetzt frag was [mm]r^{-1}[/mm] = t bedeutet zumahl wir
> ja t vorher nie erwänd haben.

Es handelt sich um einen Druck-/Schreibfehler. Richtig muss es [mm] $r^{-1}=r$ [/mm] heißen, denn es gilt ja $r [mm] \circ [/mm] r=id$.

> Also eine Transposition wäre
> z.b.:  [mm]\pmat{ 2 & 3 \\ 3 & 2 }[/mm]
>  Wenn ich die jetzt
> invertiere kommen Bruchkommazahlen heraus, was es wohl
>  nicht ganz sein kann...

Wieso Bruchkommazahlen??? Gesucht ist eine Transposition $t$ mit

$t [mm] \circ \pmat{2 & 3 \\3 & 2} [/mm] = id$.

Und man sieht leicht ein, dass dann $t= [mm] \pmat{2 & 3 \\ 3 & 2}$ [/mm] gelten muss. (Denn wenn die $2$ zuerst auf die $3$ geht, dann muss danach, wenn insgesamt die $2$ auf die $2$ gehen soll, die $3$ auf die $2$ gehen. Und wenn die $3$ zuerst auf die $2$ geht, dann muss danach, wenn insgesamt die $3$ auf die $3$ gehen soll, die $2$ auf die $3$ gehen.)

>  2.Frage:
>  Für  [mm]\pi \in S_{n}[/mm] ist [mm]sign(\pi[/mm] ) =  [mm]\produkt_{1 <= i < j <= n} \bruch{\pi(j) - \pi(i)}{j-i}[/mm]
>  
> Ich weiß dass das direkte Produkt darstellt kann aber
> irgendwie trotzdem nicht mit der Formel umgehen.
>  Wie rechnet man sich beispielsweise füt [mm]\pi[/mm] =  [mm]\pmat{ 2 & 3 & 1 \\ 3 & 2 & 1 }[/mm]
> die Signatur mithilfe der obigen gennanten Formel aus?

Nur einsetzen (beachte [mm] $\pi(1)=1$, $\pi(2)=3$, $\pi(3)=2$ [/mm] und $1<2$, $1<3$ und $2<3$):

[mm] $\mbox{sign}(\pi) [/mm] = [mm] \frac{2-3}{3-2} \cdot \frac{2-1}{3-1} \cdot \frac{3-1}{2-1} [/mm] = -1$.

Viele Grüße
Stefan

Bezug
                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 So 01.05.2005
Autor: Reaper

Danke für die Antwort. Übrigens hast du einen kleinen Tippfehler  bei der
Signaturformel. Beim ersten Multiplikator gehört anstatt 2-3/3-1 ..  2-3/3-2.
Aber ansonsten kenn ich mich jetzt aus...danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de