www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Permutationen
Permutationen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:48 Mi 28.12.2011
Autor: Coup

Aufgabe
Gegeben sind folgende Beispiele :
(Listenschreibweise)
Beispiel 1:
[mm] \pmat{ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4} [/mm]
Beispiel 2:
[mm] \pmat{ 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 } [/mm]

Bestimmen sie die Fehlstände

Hi,
Ich bin grade bezüglich dieser Beispiele verwirrt.
Im Beispiel 1 habe ich damals gelernt, dass ich schaue
welches Element links von der 4 größer ist als diese.
Also (4 5),(2 3) = 2 Fehlstände = sign 1

Beim Beispiel 2 aber hätte ich mit dieser Vorgehensweise 3 Fehlstände
(3 4), (1 4), (1 2) . Allerdings sind diese laut Script (1 3),(2 3),(2 4).

Wo liegt mein Denkfehler ?

lg
Micha

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Mi 28.12.2011
Autor: dennis2

Du musst schauen, ob für $(i<j)$ gilt: [mm] $\pi(i)>\pi(j)$. [/mm] Wenn ja, liegt ein Fehlstand vor.

Bei dem von Dir genannten zweiten Beispiel bedeutet das:

$(1,3)$ und [mm] $(\pi(1),\pi(3))=(2,1)$ [/mm] Fehlstand

$(2,3)$ und [mm] $(\pi(2),\pi(3))=(4,1)$ [/mm] Fehlstand

$(2,4)$ und [mm] $(\pi(2),\pi(4))=(4,3)$ [/mm] Fehlstand

Für die restlichen Paare gilt: $(i,j)$ und [mm] $\pi(i)<\pi(j)$, [/mm] d.h. es liegen keine weiteren Fehlstände vor.

Bezug
                
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mi 28.12.2011
Autor: Coup

Okay, danke Dennis !
Und wie multipliziere ich tau und Sigma ?
Ich starre grade auf folgende Multiplikation
[mm] \pmat{ 1 & 2 & 3 \\ 2 & 3 & 1 } [/mm] * [mm] \pmat{ 1 & 2 & 3 \\ 1 & 3 & 2 } [/mm] = [mm] \pmat{ 1 & 2 & 3\\ 2 & 1 & 3 } [/mm] , wobei dies keine Matrizenklammer sondern [ ] sein sollen.
Mein Gerd Fischer hilft mir grad nicht weiter

Vielen Dank

Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 28.12.2011
Autor: dennis2


>  [mm]\pmat{ 1 & 2 & 3 \\ 2 & 3 & 1 }[/mm] * [mm]\pmat{ 1 & 2 & 3 \\ 1 & 3 & 2 }[/mm]
> = [mm]\pmat{ 1 & 2 & 3\\ 2 & 1 & 3 }[/mm]

Naja, "Multiplikation" würde ich das nicht nennen, eher "Komposition von Transpositionen".

Du fängst rechts an zu lesen (wie immer bei Kompositionen) und schaust, wo die Elemente am Ende landen. So entsteht die rechte Gleichungsseite.

Beispiel:

Die rechte Transposition auf der linken Gleichungsseite bildet die 1 auf die 1 ab. Weiter gehts in der linken Transposition: Die 1 wird dort auf die 2 abgebildet.

Resultat: Die 1 wird auf die 2 abgebildet.

Bezug
                                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Mi 28.12.2011
Autor: Coup

Vielen Dank Dennis,
wünsche dir einen guten Rutsch !



Bezug
                                        
Bezug
Permutationen: Zykelschreibweise
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Mi 28.12.2011
Autor: dennis2

Danke, Dir ebenso!

Noch eine Anmerkung:

Du solltest - falls Du das nicht schon kennst - auf die Zykelschreibweise umsteigen, ist wirklich in vielen Dingen einfacher und z.B. in Algebra-Vorlesungen üblicher.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de