www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Petri-Netz - Definition Körper
Petri-Netz - Definition Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Petri-Netz - Definition Körper: Körper auf Mengen-ohne Zahlen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:59 Mo 02.03.2015
Autor: Andreas386

Aufgabe
Thus, a net is defined to be a triple (S,T,F) where
- S [mm] \cap [/mm] T = [mm] \emptyset [/mm] (state elemnts and transition elements are disjoint sets)
- S [mm] \cup [/mm] T = field (F) (there are neither unconnected state elements nor transition elements)
- F [mm] \neq \emptyset [/mm] (nets cannot be empty)
- F [mm] \subseteq [/mm] S [mm] \times [/mm] T [mm] \cup [/mm] T [mm] \times [/mm] S (the flow relation holds only between state elements and transition elements or vice-versa).

Ich verstehe alle Zeilen von der Petri-Netz Definition von Petri, jedoch verstehe ich die Körperdefinition nicht, da es sich bei S und T nicht um Zahlen handelt, sondern um Mengen der Form: S = [mm] \{s_1, s_2\}; [/mm] T = [mm] \{t_1\}; F=\{(s_1, t_1); (t_1, s_2)\}. [/mm] Wie funktioniert hier die Addition und Multiplikation?

Quelle: https://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/GeneralNetTheory.pdf

Ich würde mich freuen, wenn mir jemand weiterhelfen könnte

Vielen Dank im Voraus!

Nur für Erst-Poster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Petri-Netz - Definition Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 02.03.2015
Autor: fred97


> Thus, a net is defined to be a triple (S,T,F) where
>  - S [mm]\cap[/mm] T = [mm]\emptyset[/mm] (state elemnts and transition
> elements are disjoint sets)
>  - S [mm]\cup[/mm] T = field (F) (there are neither unconnected
> state elements nor transition elements)
>  - F [mm]\neq \emptyset[/mm] (nets cannot be empty)
>  - F [mm]\subseteq[/mm] S [mm]\times[/mm] T [mm]\cup[/mm] T [mm]\times[/mm] S (the flow
> relation holds only between state elements and transition
> elements or vice-versa).
>  Ich verstehe alle Zeilen von der Petri-Netz Definition von
> Petri, jedoch verstehe ich die Körperdefinition nicht, da
> es sich bei S und T nicht um Zahlen handelt, sondern um
> Mengen der Form: S = [mm]\{s_1, s_2\};[/mm] T = [mm]\{t_1\}; F=\{(s_1, t_1); (t_1, s_2)\}.[/mm]
> Wie funktioniert hier die Addition und Multiplikation?
>  
> Quelle:
> https://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/GeneralNetTheory.pdf
>  
> Ich würde mich freuen, wenn mir jemand weiterhelfen
> könnte
>  
> Vielen Dank im Voraus!
>  
> Nur für Erst-Poster
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Wenn ich mich richtig erinnere, so hat F ("Field") hier nichts mit Körpern zu tun.

F ist eine Teilmenge von  $( S  [mm] \times [/mm]  T)  [mm] \cup [/mm]  (T  [mm] \times [/mm]  S) $

Weiter nichts

FRED

Bezug
                
Bezug
Petri-Netz - Definition Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mo 02.03.2015
Autor: Andreas386

Hallo Fred,

vielen Dank für deine schnelle Antwort. Das mit der Teilmenge ist mir klar, aber wieso Definiert Petri dann: S [mm] \cup [/mm] T = field(f), wenn es überflüssig ist.

Meine Theorie war bisher, dass evtl. die Transition einfach die Addition darstellt.

Viele Grüße
Andreas

Bezug
                
Bezug
Petri-Netz - Definition Körper: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:52 Mo 02.03.2015
Autor: Andreas386


> > Thus, a net is defined to be a triple (S,T,F) where
>  >  - S [mm]\cap[/mm] T = [mm]\emptyset[/mm] (state elemnts and transition
> > elements are disjoint sets)
>  >  - S [mm]\cup[/mm] T = field (F) (there are neither unconnected
> > state elements nor transition elements)
>  >  - F [mm]\neq \emptyset[/mm] (nets cannot be empty)
>  >  - F [mm]\subseteq[/mm] S [mm]\times[/mm] T [mm]\cup[/mm] T [mm]\times[/mm] S (the flow
> > relation holds only between state elements and transition
> > elements or vice-versa).
>  >  Ich verstehe alle Zeilen von der Petri-Netz Definition
> von
> > Petri, jedoch verstehe ich die Körperdefinition nicht, da
> > es sich bei S und T nicht um Zahlen handelt, sondern um
> > Mengen der Form: S = [mm]\{s_1, s_2\};[/mm] T = [mm]\{t_1\}; F=\{(s_1, t_1); (t_1, s_2)\}.[/mm]
> > Wie funktioniert hier die Addition und Multiplikation?
>  >  
> > Quelle:
> >
> https://www.informatik.uni-hamburg.de/TGI/mitarbeiter/profs/petri/doc/GeneralNetTheory.pdf
>  >  
> > Ich würde mich freuen, wenn mir jemand weiterhelfen
> > könnte
>  >  
> > Vielen Dank im Voraus!
>  >  
> > Nur für Erst-Poster
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.  
>
>
> Wenn ich mich richtig erinnere, so hat F ("Field") hier
> nichts mit Körpern zu tun.
>  
> F ist eine Teilmenge von  [mm]( S \times T) \cup (T \times S)[/mm]
>  
> Weiter nichts
>  
> FRED

Hallo Fred,

vielen Dank für deine schnelle Antwort. Das mit der Teilmenge ist mir klar, aber wieso Definiert Petri dann: S $ [mm] \cup [/mm] $ T = field(f), wenn es überflüssig ist.

Meine Theorie war bisher, dass evtl. die Transition einfach die Addition darstellt.

Viele Grüße
Andreas

Bezug
                        
Bezug
Petri-Netz - Definition Körper: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 11.03.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de