www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - (Phasen-)Fluss einer DGL
(Phasen-)Fluss einer DGL < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Phasen-)Fluss einer DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Do 21.04.2011
Autor: path

Aufgabe
Def.: Das Vektorfeld f: U [mm] \to \IR^{n} [/mm] auf der offenen Menge U [mm] \subseteq \IR^{n} [/mm] sei lokal Lipschitz-stetig. Wir betrachten die DGL [mm] \dot{x}=f(x). [/mm]
1. Existiert für alle [mm] x_{0} \in [/mm] U eine Lösung [mm] \phi_{x_{0}}: \IR \to [/mm] U des AWP [mm] \dot{x}=f(x), x(0)=x_{0}, [/mm] dann heißt die Abbildung [mm] \Phi [/mm] : [mm] \IR [/mm] x U [mm] \to [/mm] U , (t,x) [mm] \mapsto \phi_{x}(t) [/mm] Phasenfluss der DGL.
2. Das Bild [mm] \phi(I) \subseteq [/mm] U einer Lösungskurve [mm] \phi [/mm] : I [mm] \to [/mm] U der DGL heißt Orbit . Für x [mm] \in [/mm] U heißt [mm] O(x):=\Phi(\IR,x) [/mm] Orbit durch x.



Hallo Matheraum!
Meine allererste Frage:

Ich habe demnächst eine Klausur in gewöhnlichen DGL, und habe mir im Vorfeld im Internet ein paar Videos angeschaut, wie DGL praktisch gelöst werden.
Wenn ich mir aber unser Skript anschaue, verstehe ich leider nur Bahnhof.
Vor allem unter den Definitionen von Phasenfluss und Orbit kann ich mir nichts vorstellen. Ich hoffe, jemand könnte das anschaulich erklären.

Vielen Dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
(Phasen-)Fluss einer DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Fr 22.04.2011
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenmr]

> Def.: Das Vektorfeld f: U [mm]\to \IR^{n}[/mm] auf der offenen Menge
> U [mm]\subseteq \IR^{n}[/mm] sei lokal Lipschitz-stetig. Wir
> betrachten die DGL [mm]\dot{x}=f(x).[/mm]
>  1. Existiert für alle [mm]x_{0} \in[/mm] U eine Lösung
> [mm]\phi_{x_{0}}: \IR \to[/mm] U des AWP [mm]\dot{x}=f(x), x(0)=x_{0},[/mm]
> dann heißt die Abbildung [mm]\Phi[/mm] : [mm]\IR[/mm] x U [mm]\to[/mm] U , (t,x)
> [mm]\mapsto \phi_{x}(t)[/mm] Phasenfluss der DGL.
>  2. Das Bild [mm]\phi(I) \subseteq[/mm] U einer Lösungskurve [mm]\phi[/mm] :
> I [mm]\to[/mm] U der DGL heißt Orbit . Für x [mm]\in[/mm] U heißt
> [mm]O(x):=\Phi(\IR,x)[/mm] Orbit durch x.
>  
>
> Hallo Matheraum!
>  Meine allererste Frage:
>  
> Ich habe demnächst eine Klausur in gewöhnlichen DGL, und
> habe mir im Vorfeld im Internet ein paar Videos angeschaut,
> wie DGL praktisch gelöst werden.
>  Wenn ich mir aber unser Skript anschaue, verstehe ich
> leider nur Bahnhof.
>  Vor allem unter den Definitionen von Phasenfluss und Orbit
> kann ich mir nichts vorstellen. Ich hoffe, jemand könnte
> das anschaulich erklären.

Da gibt es eine einfache physikalische Bedeutung; die mathematische Beschreibung ist deren Abstraktion.

Nehmen wir mal an, die gegebene DGL beschreibt die Bewegung einer Masse unter dem Einfluss (konvervativer) Kräfte. Wenn ist den Ort [mm] $x_0$ [/mm] der Masse zum Zeitpunkt $t=0$ kenne, so gibt mir die Lösung der DGL den Ort zu einem beliebigen Zeitpunkt t. Die Lösung [mm]\phi_{x_{0}}[/mm] zum Anfangswert [mm] $x_0$ [/mm] definiert die Bahnkurve der Masse im Raum.

Sei jetzt die Masse zu irgendeinem Zeitpunkt [mm] $t_0$ [/mm] am Punkt x der Bahn, also [mm] $\phi_{x_{0}}(t_0) [/mm] = x$. Wenn die Zeit t vergangen ist, wird sie am Ort [mm] $y=\phi_{x_{0}}(t_0+t)$ [/mm] sein. Unter den Voraussetzungen an die Funktion f gibt es nun eine Abbildung, den Phasenfluss [mm] $\Phi$ [/mm] mit [mm] $y=\Phi(t,x)$. [/mm] Beachte, dass hier der Anfangswert [mm] $x_0$ [/mm] nicht mehr vorkommt; diese Abbildung beschreibt also alle Lösungen auf einmal, unabhängig vom Anfangswert: Es ist [mm] $\phi_{x_{0}}(t) [/mm] = [mm] \Phi(t,x_0)$ [/mm] .

Der Phasenfluss sagt mir also, wo sich die Masse in der Zukunft befinden wird (oder in der Vergangenheit befunden hat), wenn ich nur einen einzigen Bahnpunkt habe. Daher ist die Menge der Punkte [mm] $\{\Phi(t,x)\mid t\in\IR, \text{ x fest}\}$ [/mm] gerade die gesamte Bahnkurve, die durch x geht, und diese ist eindeutig durch x bestimmt. Daher der Name Orbit.

Viele Grüße
   Rainer

Bezug
                
Bezug
(Phasen-)Fluss einer DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Fr 22.04.2011
Autor: path

Ist ja eigentlich echt einleuchtend, so wie du das erklärt hast, aber als ich mir die Definition daheim angeschaut hab, bin ich nicht drauf gekommen. Hab auch vorher im Internet keine so anschauliche Erklärung gefunden.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de