www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Picard-Lindelöf
Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Lindelöf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 14.07.2008
Autor: benevonmattheis

Hallo,
diese Frage ergab sich für mich nach einer Klausur. Man sollte zeigen, dass ein Anfangswertproblem eine eindeutige Lösung auf einem bestimmten Intervall hat.
Warum reicht hierfür der Satz von Picard-Lindelöf nicht aus. Die Muster lösung sah zuerst vor, dass man mit Peano zeigt, dass eine Lösung existiert, dann mit P.-L. die Eindeutigkeit zeigt. Aber waurm sagt P.-L. nicht auch die Existenz (Übungsleiter sagen, dass würde er nicht tun)? Der Beweis basiert doch auf der Picarditeration, die als Fixpunktieration erkannt wird, sodass Banach benutzt wird. Die Picarditeration liefert doch dann aber eine Lösung, die sogar noch eindeutig ist, man benutzt doch garnicht, dass schon eine Lösung existiert.
Oder wird dies zu Anfang benutzt um einen nichtleeren Banachraum zu haben? Aber der ist doch nur [mm] (C^{0}, ||\*||_{\infty}) [/mm] und damit auch nichtleer...
Hilfe und danke,
Benevonmattheis

        
Bezug
Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 14.07.2008
Autor: SorcererBln


> Hallo,
>  diese Frage ergab sich für mich nach einer Klausur. Man
> sollte zeigen, dass ein Anfangswertproblem eine eindeutige
> Lösung auf einem bestimmten Intervall hat.
>  Warum reicht hierfür der Satz von Picard-Lindelöf nicht
> aus. Die Muster lösung sah zuerst vor, dass man mit Peano
> zeigt, dass eine Lösung existiert, dann mit P.-L. die
> Eindeutigkeit zeigt. Aber waurm sagt P.-L. nicht auch die
> Existenz (Übungsleiter sagen, dass würde er nicht tun)? Der
> Beweis basiert doch auf der Picarditeration, die als
> Fixpunktieration erkannt wird, sodass Banach benutzt wird.
> Die Picarditeration liefert doch dann aber eine Lösung, die
> sogar noch eindeutig ist, man benutzt doch garnicht, dass
> schon eine Lösung existiert.
>  Oder wird dies zu Anfang benutzt um einen nichtleeren
> Banachraum zu haben? Aber der ist doch nur [mm](C^{0}, ||\*||_{\infty})[/mm]
> und damit auch nichtleer...
>  Hilfe und danke,
>  Benevonmattheis

Ein bekannter Beweis des Satzes von Picard-Lindelöf benutzt den Banachschen Fixpunktsatz aus, der etwas über Eindeutigkeit und Existenz aussagt. Und in der Tat sichert der Satz von Picard-Lindelöf die Existenz und Eindeutigkeit einer gewöhnlichen (Operator)-Differentialgleichung.

Wenn deine Übungsleiter also sowas behaupten, dass die Eindeutigkeit nicht mit Picard-Lindelöf folgt, dann sollen sie dir doch mal ein Gegenbeispiel zeigen, so dass die Lösung existiert, aber nciht eindeutig ist, obwohl alle Voraussetzungen des Satzes erfüllt sind.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de