www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Picard Iteration
Picard Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard Iteration: Aufgabe
Status: (Frage) überfällig Status 
Datum: 17:15 So 11.11.2007
Autor: Mira1

Aufgabe
Betrachten sie die AWA
y'(x) = [mm] x^2 [/mm] + [mm] y^2 [/mm]
Berechnen sie die Picard-Iterierte [mm] y_{2} [/mm] zur Stammfunktion [mm] y_{0}(x)=1+x. [/mm]
Bestimmen Sie mit der Wahl a=1/2, b=1 ein Existenzintervall der eindeutigen Lösung.
Schätzen Sie dort den Fehler von [mm] y_{2} [/mm] ab, mit Hilfe der Fehlerformel des Banachschen Fixpunktsatzes.

Hallo zusammen
Ich soll diese Aufgabe lösen, habe aber leider keine Idee wie ich anfangen soll und was ich tun muss.
Kann mir da jemand weiter helfen?
Vielen Dank
Mira

        
Bezug
Picard Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 So 11.11.2007
Autor: MatthiasKr

Hi,
> Betrachten sie die AWA
>  y'(x) = [mm]x^2[/mm] + [mm]y^2[/mm]
>  Berechnen sie die Picard-Iterierte [mm]y_{2}[/mm] zur Stammfunktion
> [mm]y_{0}(x)=1+x.[/mm]
>  Bestimmen Sie mit der Wahl a=1/2, b=1 ein
> Existenzintervall der eindeutigen Lösung.
>  Schätzen Sie dort den Fehler von [mm]y_{2}[/mm] ab, mit Hilfe der
> Fehlerformel des Banachschen Fixpunktsatzes.
>  Hallo zusammen
>  Ich soll diese Aufgabe lösen, habe aber leider keine Idee
> wie ich anfangen soll und was ich tun muss.
>  Kann mir da jemand weiter helfen?
>  Vielen Dank
>  Mira

das ist eigentlich ganz einfach: schau in dein skript! dort wirst du im umfeld des satzes von picard lindeloef garantiert die picard-iteration finden. mit dieser kann man konstruktiv die loesungen von DGLs annaehern, durch wiederholte iteration naemlich. anfangen sollst du mit der funktion [mm] $y_0$ [/mm] und durch 2maliges iterieren [mm] $y_2$ [/mm] bestimmen.

ausserdem solltest du dort (oder beim banachschen fixpunktsatz) eine formel finden, mit der du den fehler der iterierten abschaetzen kannst.

gruss
matthias

Bezug
        
Bezug
Picard Iteration: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Di 13.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de