www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - PoissonVerteilung
PoissonVerteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PoissonVerteilung: Abschätzung
Status: (Frage) überfällig Status 
Datum: 18:17 Mo 26.11.2007
Autor: barsch

Aufgabe
Sei X Poissonverteilte Zufallsvariable, [mm] \lambda [/mm] Parameter.

Zeige, dass

[mm] \IP(X>{k})\le{\bruch{\lambda^{k+1}}{(k+1)!}} [/mm]

Hi,

das einzige, was mir dazu einfallen würde, wäre Induktion. Aber selbst da hakt es im Moment.

Zur Veranschaulichung der Ungleichung: Sei X die Anzahl an Personen, die bei einer Telefonhotline anrufen. k bezeichne die Anzahl der besetzten Telefone.

[mm] \IP(X>{k})\le{..} [/mm] steht z.B. für die Wahrscheinlichkeit, dass mehr Personen anrufen als Telefonleitungen zur Verfügung stehen; so verstehe ich das zumindest.

Ich weiß, dass

[mm] \IP(X=k)=\bruch{\lambda^k}{k!}*e^{-\lambda}. [/mm]

Aber selbst hier sehe ich nicht, wie mir das helfen könnte!? [kopfkratz2]

MfG barsch

Ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.


        
Bezug
PoissonVerteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:58 Mi 28.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
PoissonVerteilung: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 So 02.12.2007
Autor: barsch

Hi,

ich glaube, mir ist jetzt selbst etwas dazu eingefallen. Ich dachte mir, vielleicht wird die Frage auch mal für andere Interessant und deswegen wäre es vorteilhaft, wenn ich meine Idee einmal poste.

Zu zeigen: $ [mm] \IP(X>{k})\le{\bruch{\lambda^{k+1}}{(k+1)!}} [/mm] $


[mm] \IP(X>{k})=\summe_{i=k+1}^{\infty}\bruch{\lambda^i}{i!}\cdot{}e^{-\lambda} [/mm]

(jetzt würde ich eine Indexverschiebung vornehmen)

[mm] =\summe_{i=0}^{\infty}\bruch{\lambda^{i+k+1}}{(i+k+1)!}\cdot{}e^{-\lambda} [/mm]

[mm] =\summe_{i=0}^{\infty}\bruch{\lambda^i*\lambda^{k+1}}{(i+k+1)!}\cdot{}e^{-\lambda} [/mm]

[mm] =\lambda^{k+1}\cdot{}e^{-\lambda}*\summe_{i=0}^{\infty}\bruch{\lambda^i}{(i+k+1)!} [/mm]

Jetzt habe ich folgende Abschätzung im Internet gefunden: [mm] (n+m)!\ge{n!*m!} [/mm]

Daraus ergibt sich:

[mm] \lambda^{k+1}\cdot{}e^{-\lambda}*\summe_{i=0}^{\infty}\bruch{\lambda^i}{(i+k+1)!} [/mm]

[mm] \le{\lambda^{k+1}\cdot{}e^{-\lambda}*\summe_{i=0}^{\infty}\bruch{\lambda^i}{i!*(k+1)!}} [/mm]

[mm] ={\bruch{1}{(k+1)!}*\lambda^{k+1}\cdot{}e^{-\lambda}*\summe_{i=0}^{\infty}\bruch{\lambda^i}{i!}} [/mm]

Jetzt weiß man (aus der Analysis), dass [mm] \summe_{i=0}^{\infty}\bruch{\lambda^i}{i!}=e^\lambda. [/mm]

Es folgt:

[mm] {\bruch{1}{(k+1)!}*\lambda^{k+1}\cdot{}e^{-\lambda}*\summe_{i=0}^{\infty}\bruch{\lambda^i}{i!}} [/mm]

[mm] =\bruch{1}{(k+1)!}*\lambda^{k+1}\cdot{}e^{-\lambda}*e^\lambda=\bruch{\lambda^{k+1}}{(k+1)!} [/mm]

Insgesamt folgt demnach:

[mm] \IP(X>{k})\le{\bruch{\lambda^{k+1}}{(k+1)!}} [/mm]    q.e.d.

MfG barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de