www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Poisson Prozess
Poisson Prozess < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson Prozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Do 07.05.2009
Autor: ueberforderter_Ersti

Aufgabe
Ein Erstversicherer geht zu einem Rückversicherer und will eine Stopp-Loss-Versicherung in der folgenden Art kaufen:
-die Zeitpunkte des Schadens mit einem Poissonprozess der Rate 1 Ereignis pro Jahr modelliert.
-die Schadenhöhe in jedem Ereignis eine iid Zufallsgrösse mit Erwartungswert 100 Millionen.

Der Erstversicherer will eine Rückversicherung kaufen, welche folgendermassen konstruiert ist: sobald es mindestens 2 Schadenfälle in
einem Jahr gibt, übernimmt die Rückversicherung die gesamte Schadensumme ab dem zweiten Schadenfall.

Berechnen Sie in diesem Fall diese untere Schranke für eine Jahres-Prämie, welche der Rückversicherer verlangen muss.

hi zusammen!
Ich melde mich mal wider mit einer Stochastikaufgabe, welche mich vor Probleme stellt.
Die Aufgabestellung ist soweit klar, nur ist mir die Vorgehensweise noch völlig schleierhaft.. Die verlangte Prämie muss dem erwarteten Schaden entsprechen, nicht? Nur ist mir etwas unklar, wie ich die den erwarteten Schaden modellieren kann. [mm] \lambda [/mm] ist 1 und ich habe im Skript noch folgende Formel gefunden [mm] P[X=x]=e^{-\lambda} \bruch{\lambda^{x}}{x!} [/mm] wobei x=2, weil wir die Wahrscheinlichkeit möchten, mit welcher 2 Ereignisse vorkommen (oder muss ich da sogar 3 nehmen, da erst ab dem dritten gezahlt wird?). dann [mm] \lambda [/mm] wie gesagt ist 1.
Also käme ich auf P[x=2]=0.1834. Also liegt die Wahrscheinlichkeit für 2 Schadensfälle bei etwas über 18%?
Ich könnte also ganz dringend Hilfe gebrauchen, ob ich vollkommen auf dem Holzweg bin, oder wie weiter und wäre sehr froh um Tipps! Vielen lieben Dank, Ersti

        
Bezug
Poisson Prozess: Tipp
Status: (Antwort) fertig Status 
Datum: 18:10 Fr 08.05.2009
Autor: generation...x

Du musst natürlich die Wahrscheinlichkeit berechnen, dass 2 oder mehr Schadenfälle auftreten. Da wird es einfacher sein, das Gegenereignis (0 bzw. 1 Schaden) zu betrachten und den Wert von 1 abzuziehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de