www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - Polarform Winkelberechnung
Polarform Winkelberechnung < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarform Winkelberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 26.04.2009
Autor: hase-hh

Aufgabe
Bestimmen Sie die Polarform von z...

also |z| sowie cos [mm] \alpha [/mm] u. sin [mm] \alpha. [/mm]

1. z= 1 + 2i

2. z = 77i

3.  z = -5 -12i

4. -3 -3i


Moin,

meine Frage ist, warum bei den Aufgaben z.T. verschiedene Winkel herauskommen für cos bzw. sin?

Müsste nicht immer derselbe Winkel [mm] \alpha [/mm] herauskommen?
Und wenn nicht, warum nicht bzw. wie dann?

z = a + b*i   --- Formel 0


1. z= 1 + 2i

r = |z| = [mm] \wurzel{a^2 +b^2} [/mm]    --- Formel 1

|z| = [mm] \wurzel{5} [/mm]  

cos [mm] \alpha [/mm] = [mm] \bruch{a}{|z|} [/mm]   --- Formel 2

sin [mm] \alpha [/mm] = [mm] \bruch{b}{|z|} [/mm]    --- Formel 3

z = r*(cos [mm] \alpha [/mm] + i*sin [mm] \alpha) [/mm]   --- Formel 4

cos [mm] \alpha [/mm] = [mm] \bruch{1}{\wurzel{5}} [/mm]   => [mm] \alpha [/mm] = 63,43°

sin [mm] \alpha [/mm] = [mm] \bruch{2}{\wurzel{5}} [/mm]   => [mm] \alpha [/mm] = 63,43°


2. z = 77i

|z| = 77  

cos [mm] \alpha [/mm] = [mm] \bruch{0}{77} [/mm]   => [mm] \alpha [/mm] = 90°

sin [mm] \alpha [/mm] = [mm] \bruch{77}{77} [/mm] = 1   => [mm] \alpha [/mm] = 90°


3.  z = -5 -12i

|z| = 13  

cos [mm] \alpha [/mm] = [mm] \bruch{-5}{13} [/mm]   => [mm] \alpha [/mm] = 112,62°

sin [mm] \alpha [/mm] = [mm] \bruch{12}{13} [/mm]   => [mm] \alpha [/mm] = 67,38°


4. -3 -3i

|z| = [mm] \wurzel{18} [/mm]  

cos [mm] \alpha [/mm] = [mm] \bruch{-3}{\wurzel{18}} [/mm]   => [mm] \alpha [/mm] = 135°

sin [mm] \alpha [/mm] = [mm] \bruch{-3}{\wurzel{18}} [/mm]   => [mm] \alpha [/mm] = - 45°


Danke & Gruß
Wolfgang

        
Bezug
Polarform Winkelberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 So 26.04.2009
Autor: MathePower

Hallo hase-hh,

> Bestimmen Sie die Polarform von z...
>
> also |z| sowie cos [mm]\alpha[/mm] u. sin [mm]\alpha.[/mm]
>  
> 1. z= 1 + 2i
>  
> 2. z = 77i
>  
> 3.  z = -5 -12i
>  
> 4. -3 -3i
>
>
> Moin,
>
> meine Frage ist, warum bei den Aufgaben z.T. verschiedene
> Winkel herauskommen für cos bzw. sin?
>  
> Müsste nicht immer derselbe Winkel [mm]\alpha[/mm] herauskommen?
>  Und wenn nicht, warum nicht bzw. wie dann?
>  
> z = a + b*i   --- Formel 0
>  
>
> 1. z= 1 + 2i
>  
> r = |z| = [mm]\wurzel{a^2 +b^2}[/mm]    --- Formel 1
>  
> |z| = [mm]\wurzel{5}[/mm]  
>
> cos [mm]\alpha[/mm] = [mm]\bruch{a}{|z|}[/mm]   --- Formel 2
>  
> sin [mm]\alpha[/mm] = [mm]\bruch{b}{|z|}[/mm]    --- Formel 3
>  
> z = r*(cos [mm]\alpha[/mm] + i*sin [mm]\alpha)[/mm]   --- Formel 4
>  
> cos [mm]\alpha[/mm] = [mm]\bruch{1}{\wurzel{5}}[/mm]   => [mm]\alpha[/mm] = 63,43°
>  
> sin [mm]\alpha[/mm] = [mm]\bruch{2}{\wurzel{5}}[/mm]   => [mm]\alpha[/mm] = 63,43°
>
>
> 2. z = 77i
>  
> |z| = 77  
>
> cos [mm]\alpha[/mm] = [mm]\bruch{0}{77}[/mm]   => [mm]\alpha[/mm] = 90°
>  
> sin [mm]\alpha[/mm] = [mm]\bruch{77}{77}[/mm] = 1   => [mm]\alpha[/mm] = 90°
>
>
> 3.  z = -5 -12i
>  
> |z| = 13  
>
> cos [mm]\alpha[/mm] = [mm]\bruch{-5}{13}[/mm]   => [mm]\alpha[/mm] = 112,62°
>  
> sin [mm]\alpha[/mm] = [mm]\bruch{12}{13}[/mm]   => [mm]\alpha[/mm] = 67,38°
>


Nun, da [mm]\cos\left(\alpha\right) \le 0[/mm] für [mm]90^{\circ} \le \alpha \le 270^{\circ}[/mm]
und [mm]\sin\left(\alpha\right) \ge 0[/mm] für [mm]0^{\circ} \le \alpha \le 180^{\circ}[/mm],
muß [mm]\alpha[/mm] im Intervall [mm]\left[90^{\circ}, 180^{\circ}\right][/mm] liegen.


Demnach ist  hier [mm]\alpha=112,62^{\circ}[/mm] dir richtige Lösung.


>
> 4. -3 -3i
>
> |z| = [mm]\wurzel{18}[/mm]  
>
> cos [mm]\alpha[/mm] = [mm]\bruch{-3}{\wurzel{18}}[/mm]   => [mm]\alpha[/mm] = 135°
>  
> sin [mm]\alpha[/mm] = [mm]\bruch{-3}{\wurzel{18}}[/mm]   => [mm]\alpha[/mm] = - 45°
>


Weder der eine noch der andere Winkel stimmt, denn

da [mm]\cos\left(\alpha\right) \le 0[/mm] für [mm]90^{\circ} \le \alpha \le 270^{\circ}[/mm]
und [mm]\sin\left(\alpha\right) \le 0[/mm] für [mm]180^{\circ} \le \alpha \le 360^{\circ}[/mm],
muß [mm]\alpha[/mm] im Intervall [mm]\left[180^{\circ}, 270^{\circ}\right][/mm] liegen.


>
> Danke & Gruß
>  Wolfgang


Gruß
MathePower

Bezug
                
Bezug
Polarform Winkelberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 So 26.04.2009
Autor: hase-hh

Moin!

d.h.

1. die Formeln stimmen?

2. die Formel 4 ist nur von einem Winkel [mm] \alpha [/mm] abhängig?

3. die Anwendung von Formel 2 bzw. Formel 3 allein führt nur "zufällig"
   zum richtigen Ergebnis.  Ich meine damit, dass ich beide Formeln
   benutzen muss, und erst dann entscheiden kann (je nach dem in
   welchen Quadranten die Lösungen liegen können), welcher Wert der
   richtige ist?

Bezug
                        
Bezug
Polarform Winkelberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 So 26.04.2009
Autor: MathePower

Hallo hase-hh,


> Moin!
>  
> d.h.
>
> 1. die Formeln stimmen?


Ja.


>  
> 2. die Formel 4 ist nur von einem Winkel [mm]\alpha[/mm] abhängig?


Ja.


>  
> 3. die Anwendung von Formel 2 bzw. Formel 3 allein führt
> nur "zufällig"
> zum richtigen Ergebnis.  Ich meine damit, dass ich beide
> Formeln
> benutzen muss, und erst dann entscheiden kann (je nach dem
> in
>     welchen Quadranten die Lösungen liegen können), welcher
> Wert der
>     richtige ist?  


Zuerst mal betrachtest Du  die Vorzeichen von [mm]\sin\left(\alpha\right)[/mm] und [mm]\cos\left(\alpha\right)[/mm] durch die Formeln 2 und 3.

Daraus ergibt sich das Intervall, in welchem der Winkel [mm]\alpha[/mm] liegt.

Dann kannst Du mit den Formeln 2 bzw. 3 zu Werke gehen.


Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de