www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Polarisationsidentität
Polarisationsidentität < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarisationsidentität: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:21 Mo 25.05.2009
Autor: anetteS

Aufgabe
Sei V ein komplexer Innenproduktraum (= Vektorraum mit einem Skalarprodukt),
versehen von der Norm [mm] ||v||=\wurzel{}. [/mm]
Zeige, dass für alle v,w [mm] \in [/mm] V gilt:
||v+w||²-||v-w||²+i||v+iw||²-i||v-iw||²=4<v,w>

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe folgendermaßen angefangen:
||v+w||²-||v-w||²+i||v+iw||²-i||v-iw||²= ||v||²+||w||²+2<v,w>-(||v||²-||w||²-2<v,w>)+i||v+iw||²-i||v-iw||²
=4<v,w>+i||v+iw||²-i||v-iw||²
Das soll ja =4<v,w> sein, aber nachdem ich wie oben i||v+iw||²-i||v-iw||² aufgelöst habe, komme ich da nicht drauf:-(. Gibt es einen Trick oder einen anderen Ansatz?

Danke schön für eure Antworten.
Viele Grüße,
Anette.

        
Bezug
Polarisationsidentität: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mo 25.05.2009
Autor: fred97


> Sei V ein komplexer Innenproduktraum (= Vektorraum mit
> einem Skalarprodukt),
>  versehen von der Norm [mm]||v||=\wurzel{}.[/mm]
>  Zeige, dass für alle v,w [mm]\in[/mm] V gilt:
>  ||v+w||²-||v-w||²+i||v+iw||²-i||v-iw||²=4<v,w>
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe folgendermaßen angefangen:
> ||v+w||²-||v-w||²+i||v+iw||²-i||v-iw||²=
> ||v||²+||w||²+2<v,w>-(||v||²-||w||²-2<v,w>)+i||v+iw||²-i||v-iw||²
>  =4<v,w>+i||v+iw||²-i||v-iw||²
>  Das soll ja =4<v,w> sein, aber nachdem ich wie oben

> i||v+iw||²-i||v-iw||² aufgelöst habe, komme ich da nicht
> drauf:-(. Gibt es einen Trick oder einen anderen Ansatz?
>  

Vorsicht ! V ist komplex, daher ist z.B.:

             [mm] $||v+w||^2 [/mm] = [mm] ||v||^2 +++||w||^2$ [/mm]

Es ist $<w,v> = [mm] \overline{}$ [/mm] und i.a. [mm] $\not=$ [/mm]

Jetzt rechne nochmal

FRED




> Danke schön für eure Antworten.
>  Viele Grüße,
>  Anette.  


Bezug
                
Bezug
Polarisationsidentität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Mo 25.05.2009
Autor: anetteS

Ist $ [mm] ||v-w||^2 [/mm] = [mm] ||v||^2 --+||w||^2 [/mm] $?


Bezug
                        
Bezug
Polarisationsidentität: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mo 25.05.2009
Autor: fred97


> Ist [mm]||v-w||^2 = ||v||^2 --+||w||^2 [/mm]?
>  


Ja


FRED

Bezug
                                
Bezug
Polarisationsidentität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Mo 25.05.2009
Autor: anetteS

Irgendwie komme ich dann aber nicht weiter...
Habe jetzt Folgendes:
||v+w||²-||v-w||²+i||v+iw||²-i||v-iw||²=
2<v,w>+2<w,v>+i(||v||²+<v,iw>+<iw,v>+||iw||²)-i(||v||²-<v,iw>-<iw,v>+||iw||²)
=2<v,w>+2<w,v>+i<v,iw>+i<iw,v>+i<v,iw>+i<iw,v>
=2<v,w>+2<w,v>-<v,w>-<w,v>-<v,w>-<w,v>=0

Wäre wirklich sehr dankbar, wenn mich jemand auf meinen Fehler hinweisen könnte.
Gruß v. Anette.

Bezug
                                        
Bezug
Polarisationsidentität: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mo 25.05.2009
Autor: fred97

Du beherrscht die Rechenregeln des Skalarprodukts nicht !
Es ist

          [mm] $<\alpha [/mm] v,w> = [mm] \alpha$ [/mm] , aber $< [mm] v,\alpha [/mm] w> [mm] =\overline{\alpha} [/mm] <v,w>$  für [mm] \alpha \in \IC [/mm]

Dann ist z.B.:           $i<v, iw> = i [mm] \overline{i} [/mm] = <v,w>$

FRED
                

Bezug
                                                
Bezug
Polarisationsidentität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Mo 25.05.2009
Autor: anetteS

Danke schön, jetzt ist alles klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de