www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Polarkoordinatendarstellung
Polarkoordinatendarstellung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinatendarstellung: Verständnis
Status: (Frage) beantwortet Status 
Datum: 20:28 Mi 05.08.2009
Autor: Stern123

Wir haben in der Vorlesung folgendes behandelt:

[mm] cos(\alpha) [/mm] + [mm] i*sin(\alpha) [/mm] = [mm] \summe_{n=0}^{\infty} (-1)^{n}*\bruch{ \alpha^{2n}}{(2n)!} [/mm] + [mm] i*\summe_{n=0}^{\infty} (-1)^{n}*\bruch{ \alpha^{2n+1}}{(2n+1)!} [/mm] = [mm] \summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n}}{(2n)!} [/mm] +  [mm] i*\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n+1}}{(2n+1)!} [/mm] =  [mm] \summe_{n=0}^{\infty} \bruch{ (i*\alpha)^{n}}{n!} [/mm] = [mm] e^{i*\alpha} [/mm]

Ich verstehe nun folgenden Schritt nicht:
[mm] \summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n}}{(2n)!} [/mm] +  [mm] i*\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n+1}}{(2n+1)!} [/mm] =  [mm] \summe_{n=0}^{\infty} \bruch{ (i*\alpha)^{n}}{n!} [/mm]


Weiß jemand, was hier gemacht wurde?
Das letzte ist ja nichts anderes als die Exponentialreihe:
[mm] e^{i*apha} [/mm] = [mm] \summe_{n=0}^{\infty} \bruch{(i* \alpha)^{n}}{n!} [/mm]
Aber wie komme ich darauf?


Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Polarkoordinatendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 05.08.2009
Autor: MathePower

Hallo Stern123,

> Wir haben in der Vorlesung folgendes behandelt:
>  
> [mm]cos(\alpha)[/mm] + [mm]i*sin(\alpha)[/mm] = [mm]\summe_{n=0}^{\infty} (-1)^{n}*\bruch{ \alpha^{2n}}{(2n)!}[/mm]
> + [mm]i*\summe_{n=0}^{\infty} (-1)^{n}*\bruch{ \alpha^{2n+1}}{(2n+1)!}[/mm]
> = [mm]\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n}}{(2n)!}[/mm]
> +  [mm]i*\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n+1}}{(2n+1)!}[/mm]
> =  [mm]\summe_{n=0}^{\infty} \bruch{ (i*\alpha)^{n}}{n!}[/mm] =
> [mm]e^{i*\alpha}[/mm]
>  
> Ich verstehe nun folgenden Schritt nicht:
>  [mm]\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n}}{(2n)!}[/mm]
> +  [mm]i*\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n+1}}{(2n+1)!}[/mm]
> =  [mm]\summe_{n=0}^{\infty} \bruch{ (i*\alpha)^{n}}{n!}[/mm]
>
>
> Weiß jemand, was hier gemacht wurde?


Das "i" vor der zweiten Summe wurde in die selbige hinein multipliziert.


[mm]i*\summe_{n=0}^{\infty} i^{2n}*\bruch{ \alpha^{2n+1}}{(2n+1)!}=\summe_{n=0}^{\infty} i*i^{2n}*\bruch{ \alpha^{2n+1}}{(2n+1)!}=\summe_{n=0}^{\infty} i^{2n+1}*\bruch{ \alpha^{2n+1}}{(2n+1)!}=\summe_{n=0}^{\infty} \bruch{\left(i* \alpha\right)^{2n+1}}{(2n+1)!}[/mm]

Dann sind diese 2 Summen zu einer zusammengefaßt worden.


>  Das letzte ist ja nichts anderes als die
> Exponentialreihe:
>  [mm]e^{i*apha}[/mm] = [mm]\summe_{n=0}^{\infty} \bruch{(i* \alpha)^{n}}{n!}[/mm]
>  
> Aber wie komme ich darauf?


Nun, die Exponentialreihe ist ja hinlänglich bekannt:

[mm]e^{x}[/mm] = [mm]\summe_{n=0}^{\infty} \bruch{x^{n}}{n!}[/mm]

Und für x kannst Du jedes beliebige Argument einsetzen,
hier in diesem Fall [mm]x=i*\alpha[/mm].


>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt.


Gruss
MathePower

Bezug
                
Bezug
Polarkoordinatendarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Do 06.08.2009
Autor: Stern123

Danke für die schnelle Antwort.
Aber was ich noch nicht verstehe ist, wie man das nun zu einer Summe zusammenfasst.

Ich erhalte doch:
[mm] \summe_{n=0}^{\infty} \bruch{ (i\cdot{}\alpha)^{2n}}{(2n)!} [/mm] + [mm] \summe_{n=0}^{\infty} \bruch{ (i\cdot{}\alpha)^{2n+1}}{(2n+1)!} [/mm]

Ist das dann gleich   [mm] e^{i*\alpha} [/mm] + [mm] e^{i*\alpha} [/mm]   ?
Aber dann würde ja [mm] 2*e^{i*\alpha} [/mm] rauskommen, was ja nicht der Fall ist.
Ist es nur die Exponentialreihe, wenn ich nur n (und nicht 2n) als Potenz bzw. Fakultät habe?
Wo ist mein Denkfehler bzw. wie kann ich die beiden Summen so umformen, dass ich nur noch $ [mm] \summe_{n=0}^{\infty} \bruch{ (i\cdot{}\alpha)^{n}}{n!} [/mm] $ habe?


Bezug
                        
Bezug
Polarkoordinatendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 06.08.2009
Autor: fred97

[mm] $\summe_{n=0}^{\infty}a_{2n}+\summe_{n=0}^{\infty}a_{2n+1} [/mm] =$

[mm] $a_0+a_2+a_4+a_6+ [/mm] .....$

[mm] $+a_1+a_3+a_5+ [/mm] ....$

=$ [mm] a_0+a_1+a_2+a_3+a_4+ [/mm] .... = [mm] \summe_{n=0}^{\infty}a_n [/mm] $


Hilft das ?

FRED

Bezug
                                
Bezug
Polarkoordinatendarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 Do 06.08.2009
Autor: Stern123

Aaah. Okay. Jetzt ist es logisch. Im ersten Summanden hab ich ja nur die gerade und im zweiten die ungeraden "Teile".
Danke! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de