www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Polstelle - hebbar oder nicht?
Polstelle - hebbar oder nicht? < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstelle - hebbar oder nicht?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Di 28.03.2006
Autor: janty

Aufgabe
geg.:
f(x) =  [mm] \bruch{0,5x^{2} + 2x - 5}{x - 2} [/mm]

Untersuchen Sie die Funktion auf Asymptoten!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Ich habe bei der obigen Aufgabe eine Polynomdivision durchgeführt und kam dadurch auf die schiefe Asymptote g(x):
g(x) = 0,5x + 3

Nun ging es noch darum, ob es Polstellen gibt. Hierzu habe ich den Nenner der Funktion = 0 gesetzt:

x - 2 = 0 , d.h.
x = 2

Also liegt an der Stelle x = 2 eine Polstelle vor. Soweit, so gut. Aber jetzt ist die Frage, ob die Polstelle hebbar ist oder nicht (und mit Vorzeichenwechsl oder ohne). Laut Aufgabenlösung besteht an der Stelle eine hebbare Definitionslücke....aber warum? Ich dachte eine hebbare Definitionslücke bedeutet, dass die Nullstelle des Nenners auch eine Nullstelle des Zählers ist (sprich wenn ich x=2 in den Zähler einsetzen würde müsste ebenfalls 0 rauskommen, dem ist aber nicht so...). Oder liege ich da falsch?

Wie untersuche ich eine Polstelle sicher darauf, was für eine Polstelle (hebbar etc..) sie ist?
Zerbrech mir da echt grade den Kopf drüber und über Hilfe würde ich mich freuen.
Vielen Dank schonmal im Voraus,
Laura

        
Bezug
Polstelle - hebbar oder nicht?: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Di 28.03.2006
Autor: GorkyPark

Hallo,

schau doch bitte in der Lösung nach. Es handelt sich hier nicht um eine hebbare Definitionslücke sondern es ist ein Pol mit Vorzeichenwechsel...
(Mach eine Skizze vielleicht...)

Polstellen und Definitionslücken kann man so herausfinden wie du es beschrieben hast. Wenn der Bruch [mm] \bruch{0}{0} [/mm] lautet, ist es eine Definitionslücke die hebbar ist.

Ciao

Gorky

Bezug
                
Bezug
Polstelle - hebbar oder nicht?: 2 kleine Rückfragen
Status: (Frage) beantwortet Status 
Datum: 18:19 Di 28.03.2006
Autor: janty

Hallo Gorky,
vielen Dank für deine Hilfe!
ich hab nochmal in der Lösung nachgeschaut und da steht wirklich "hebb. Definitionslücke", aber das ist dann wohl ein Fehler.
Ich hätte noch 2 kleine Rückfragen:
Dass die Polstelle mit VZW ist, wie hast du das ausgerechnet?
(x von links und rechts gegen 2 laufen lassen??)
Und zum zweiten, ich hab mir eine Skizze gemacht...
gehen Funktionen im Bereich der Polstelle immer gegen + oder - [mm] \infty? [/mm]
und wie soll man sich eine hebbare Lücke graphisch vorstellen?

LG und danke nochmal,
Laura

Bezug
                        
Bezug
Polstelle - hebbar oder nicht?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 29.03.2006
Autor: GorkyPark

Hallo Laura,

ja ich hab ein bisschen gemogelt und den Pol durch einen Plot gefunden.

Zu Frage 1: ja, du näherst dich einfach der nicht definierten Stelle von links und rechts an. Ist das Ergebnis auf beiden Seiten gleich (d.h.  [mm] -\infty [/mm] und - [mm] \infty [/mm] oder  [mm] \infty [/mm] und  [mm] \infty), [/mm] so ändert sich das Vorzeichen nicht...
Ansonsten gibt es einen Vorzeichenwechsel.
Es gibt aber sicherlich noch andere Möglichkeiten zum VZW, die die anderen Mitglieder hier wissen.

Zu Frage 2: Pole sehen immer so aus und steigen/sinken ins Unendliche je näher man sich der nicht definierten Stelle befindet.
Die hebbare Definitionslücke musst du dir einfach wie ein Loch für diesen (nicht definierten) x-Wert vorstellen. Die Funktion läuft regelmässig hat aber dann einfach eine kleine Lücke.

Bsp.: f(x)= [mm] \bruch{ x^{2}-5x+6}{x-2} [/mm]


bei x=2 ist eine hebbare Definitonslücke, d.h.  [mm] \limes_{x\rightarrow\2}f(x) [/mm] =-1   (wenn x gegen 2 zugeht, ich kann die Formel nicht schreiben :-))

Du kommst folgendermassen drauf:

f(x) kann durch (x-2) gekürzt werden und man erhält x-3. Bei x=2, ist y=-1 (=hebbare Lücke)



BYe Bye

Gorky



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de