www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Polstellen von Funktionen
Polstellen von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen von Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 10.12.2009
Autor: kolja2

Aufgabe
Untersuchen Sie ob die folgenden drei Funktionen von [mm] f_{i}:\IR\backslash\{1\}\to\IR [/mm] im Punkt 1 eine Polstelle (mit oder ohne Vorzeichenwechsel?) haben oder stetig fortsetzbar sind.

[mm] f_{1}(x)=\bruch{x^{3}-1}{x-1} [/mm]

[mm] f_{2}(x)=\bruch{x+1}{x-1} [/mm]

[mm] f_{3}(x)=\bruch{1}{x^{2}-2x+1} [/mm]

Hi Leute,

ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.
Ich bin mir bei der Lösung dieser Aufgabe nicht ganz sicher.
Also eine Polstelle ist eine Definitionslücke einer Funktion. Um jetzt die Polstellen zu berechnen, dachte ich mir, ich setze den Nenner gleich 0 und setze dieses x in den Zähler?
Sollte das Ergebnis 0 sein, gäbe es keine Polstelle, kommt im Zähler und Nenner das gleiche raus gibt es eine Polstelle ohne Vorzeichenwechsel und kommt im Zähler und Nenner etwas unterschiedliches raus, gibt es eine Polstelle ohne Vorzeichenwechsel.
Bin ich soweit auf korrektem Weg?

Danke schon mal für die Hilfe!

        
Bezug
Polstellen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Do 10.12.2009
Autor: reverend

Hallo kolja2,

interessante Idee, aber noch nicht vollständig.

Betrachte [mm] f_4(x)=\bruch{x^2+2x-3}{x^3-x^2-x+1} [/mm]

lg
reverend

Bezug
                
Bezug
Polstellen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 10.12.2009
Autor: kolja2

Hi,

danke für die schnelle Antwort, aber irgendwie hilft mir das gar nicht weiter.
Ich weiß nicht, woher das kommt, was ich damit machen soll etc.

Bezug
                        
Bezug
Polstellen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Do 10.12.2009
Autor: reverend

Hallo kolja2,

>  Ich weiß nicht, woher das kommt,

Also, es kommt von Herzen...

> was ich damit machen
> soll etc.

Aufgabe
  Untersuchen Sie ob die folgenden (drei) Funktionen von $ [mm] f_{i}:\IR\backslash\{1\}\to\IR [/mm] $ im Punkt 1 eine Polstelle (mit oder ohne Vorzeichenwechsel?) haben oder stetig fortsetzbar sind.  


Soweit auch zu [mm] f_4. [/mm] Du solltest daran erkennen, was an Deinem Ansatz noch fehlt. Deine Grundidee ist nicht schlecht, aber eben nicht vollständig. Schau mal nach Nullstellen des Zählers und des Nenners. x=1 wird, angesichts der Aufgabenumgebung, dabei womöglich eine wesentliche Rolle spielen...

lg
rev


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de