Polyederfärbungen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Der (Spiel-) Würfel ist ein beliebter Zufallsgenerator mit 6 im Idealfall gleich wahrscheinlichen Wurfergebnissen (Augenzahlen). Man könnte ihn auch als Ersatz für einen Münzwurf benützen:
gerade Augenzahl ---> "Kopf"
ungerade Augenzahl ---> "Zahl"
oder als ein Zufallsgerät für eine gleichverteilte Dreier-Auswahl:
Augenzahl 1 oder 6 ---> A
Augenzahl 2 oder 5 ---> B
Augenzahl 3 oder 4 ---> C
Dabei entspricht jeweils jedem der einzelnen Ergebnisse eine bestimmte Teilmenge der Seiten der gesamten Würfeloberfläche. Man kann die Bezeichnungen so anordnen, dass diese Teilmengen paarweise kongruente Teilmengen der Würfeloberfläche sind.
Das regelmäßige Tetraeder käme als Zufallsgenerator für n=4 in Frage (oder ebenfalls als "Ersatz" für den Münzwurf). Allerdings ist der Wurfvorgang mit einem Tetraeder praktisch betrachtet etwas "bockig", weil dieser Körper eben nicht so gut über den Tisch "rollen" kann.
Nun könnte man als Ersatz für das Tetraeder (n=4) ja zu einem regelmäßigen Dodekaeder (n=12=4*3) oder Ikosaeder (n=20=4*5) greifen. Versieht man etwa beim Ikosaeder jeweils 5 Seitenflächen mit derselben Farbe (Rot, Gelb, Blau, Schwarz) oder mit demselben Buchstaben (R,G,B,S), so hat man einen Ersatz für das Wurf-Tetraeder, der aber wesentlich besser rollt und deshalb größere Gewähr für wirklich zufällige Ergebnisse liefert.
Jetzt kommt meine geometrische Frage:
Kann man eine derartige Färbung der Seitenflächen des regulären Ikosaeders so ausführen, dass die vier entstehenden Farbgebiete (aus je 5 Seitendreiecken bestehend) zueinander kongruent (mittels Rotationen oder allenfalls Spiegelungen des Ikosaeders) sind ?
Man hätte allenfalls noch eine Wahl betr. das "Aussehen" dieser Teilmengen: Sollen z.B. die 5 rot gefärbten Seitendreiecke einen (kanten-) zusammenhängenden Bereich bilden oder sollen sie eher so über das gesamte Ikosaeder verteilt sein, dass sich die 5 einzelnen roten Dreiecke höchstens in einzelnen Eckpunkten treffen ?
Natürlich kann man sich analoge Fragen auch für das regelmäßige Dodekaeder stellen, das als Zufallsgerät den Münzenwurf, das Tetraeder oder auch den Würfel ersetzen kann.
Viel Spass beim Tüfteln, Basteln etc. !
Al-Chwarizmi
|
|
|
|
Hallo Geometrie-Freunde !
Nach einigem Probieren habe ich festgestellt, dass man die Oberfläche des regulären Ikosaeders mit 4 kongruenten Patches der folgenden Art bedecken kann:
[Dateianhang nicht öffentlich]
Dass es auch entsprechende Lösungen mit 4 zueinander kongruenten "Familien" aus je 5 paarweise "kantenfremden" Teildreiecken geben müsste, scheint mir ganz natürlich - allerdings habe ich mir solche Verteilungen noch nicht im Detail überlegt.
Auch die Oberfläche des regulären Dodekaeders lässt sich (eher noch leichter) in kongruente "Familien" zu je 2 oder 3 oder 4 oder 6 Seitenflächen unterteilen.
Für die ansprechende Darstellung von Lösungen etwa in Form von Rotations-Animationen der gefärbten Polyeder fehlen mir im Moment die geeigneten Werkzeuge
Beispiel meiner Basteleien:
[Dateianhang nicht öffentlich]
LG , Al-Chw.
Dateianhänge: Anhang Nr. 1 (Typ: pdf) [nicht öffentlich] Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:55 So 28.06.2020 | Autor: | Infinit |
Hallo Al-Chwarizmi,
ich nehme mal an, dass ich nicht der einzige bin, der das JPEG2000-Format mit keinem Programm öffnen kann, ohne hier irgendwelche Zusätze laden zu müssen. Deswegen mein Vorschlag: Speichere doch bitte das Bild als "normales" JPEG-Bild ab. Die wavelet-basierte Codierung in JPEG2000 hat sich in den letzten ca. 22 Jahren enfach nicht gegenüber der DCT-Codierung durchsetzen können.
Viele Grüße,
Infinit
|
|
|
|
|
Hallo Infinit
Danke für die Mitteilung.
Leider habe ich einfach erhebliche Mühe, Bilder irgendwie in einem vernünftigen Format (und z.B. nicht riesengroß) rüberzubringen. So richtig habe ich das einfach noch nie "geschnallt" ...
LG , Al
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:46 So 28.06.2020 | Autor: | Infinit |
Hallo Al,
jetzt musst Du nur noch im Artikel das richtige Foto an die richtige Stelle setzen.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Fr 31.07.2020 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|