www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Polynom/Konvergenz
Polynom/Konvergenz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom/Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Fr 24.04.2009
Autor: SusanneK

Aufgabe
Sei M der reelle Vektorraum aller Polynome in [mm] Abb(\IR,\IR). [/mm]
Zeigen Sie, dass [mm] \summe_{k=0}^{\infty} P^{(k)}(0) [/mm] für jedes P [mm] \in [/mm] M konvergiert.
(Dabei ist [mm] P^{(k)} [/mm] die k-te Ableitung von P)

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
ich vermute, ich verstehe die Aufgabe nicht richtig, weil ich keine Konvergenz erkennen kann:
Sei P= [mm] 3x^2+5x-2 [/mm]
Dann sind die Ableitungen:
P'=6x+5
P''=6
P'''=0 und für jede weitere Ableitung ist sie auch 0.
Da es um eine Summe für x=0 geht, fallen die x-Summanden weg und die Summe ist: -2+5+6+0+0+0...=9

Wenn ich andere Polynome nehme, hängt die Summe doch immer von den Koeffizienten ab, konvergiert also nicht.
Da diese Aufgabe unter dem Thema Metrik/Norm/Konvergenz hängt, fehlt bestimmt etwas bei meiner Herangehensweise - aber was ?

Danke, Susanne.  

        
Bezug
Polynom/Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Fr 24.04.2009
Autor: schachuzipus

Hallo Susanne,

> Sei M der reelle Vektorraum aller Polynome in
> [mm]Abb(\IR,\IR).[/mm]
>  Zeigen Sie, dass [mm]\summe_{k=0}^{\infty} P^{(k)}(0)[/mm] für
> jedes P [mm]\in[/mm] M konvergiert.
>  (Dabei ist [mm]P^{(k)}[/mm] die k-te Ableitung von P)
>  Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Hallo,
>  ich vermute, ich verstehe die Aufgabe nicht richtig, weil
> ich keine Konvergenz erkennen kann:
>  Sei P= [mm]3x^2+5x-2[/mm]
> Dann sind die Ableitungen:
>  P'=6x+5
>  P''=6
>  P'''=0 und für jede weitere Ableitung ist sie auch 0.
>  Da es um eine Summe für x=0 geht, fallen die x-Summanden
> weg und die Summe ist: -2+5+6+0+0+0...=9 [ok]

Na, die Reihe ist also wunderbar konvergent, 9 ist ja ein endlicher Wert

>  
> Wenn ich andere Polynome nehme, hängt die Summe doch immer
> von den Koeffizienten ab [ok], konvergiert also nicht.

Wieso nicht? In der Aufgabenstellung wird ja nicht verlangt, dass die Reihe für jedes Polynom gegen den gleichen Wert konvergieren muss, sondern nur, dass sie es überhaupt tut

Ich würde in diese Richtung denken:

Für Polynome gibt es stets ein [mm] $k_0$, [/mm] so dass [mm] $p^{(k_0)}\equiv [/mm] 0$ ist.

Die unendliche Summe [mm] $\sum\limits_{k=0}^{\infty} p^{(k)}(x)$ [/mm] ist also eigentlich eine endliche Summe, denn unendlich viele Summanden (ab einem [mm] $k_0$ [/mm] sind Null)

Und ausgewertet an der Stelle $x=0$ musst du nur das Absolutglied jeder dieser nicht verschwindenden Ableitungen betrachten, und das hat doch einen endlichen Wert.

Also hast du für bel. Polynome eine endliche Summe von endlichen Werten, das gibt also einen endlichen Wert und damit hast du Konvergenz ...

Versuche mal, diese Ideen irgendwie zu nem Beweis zu "verpacken" ...

Vllt. nimmst du dir mal ein allg. Polynom her [mm] $p(x)=a_nx^n+a_{n-1}x^{n-1}+....+a_1x+a_0$ [/mm] und schaust dir mal konkret die Ableitungen an und welche Werte für $x=0$ angenommen werden.

Dann kannst du sogar etwas zum Wert der Summe sagen ...

>  Da diese Aufgabe unter dem Thema Metrik/Norm/Konvergenz
> hängt, fehlt bestimmt etwas bei meiner Herangehensweise -
> aber was ?
>  
> Danke, Susanne.  


LG

schachuzipus

Bezug
                
Bezug
Polynom/Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Fr 24.04.2009
Autor: SusanneK

Hallo Schachuzipus,
vielen vielen Dank für deine Hilfe und tolle Erklärung !

Ich habe meine "falsche Denke" jetzt erkannt.
(War da nicht was mit dem Hornerschema ... ? Muss ich nochmal nachschlagen !)

LG, Susanne.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de